首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MnZn ferrites with the chemical formula Mn0.68Zn0.25Fe2.07O4 have been prepared by the conventional ceramic technique. Toroidal cores were sintered at 1350 °C for 4 h in N2/O2 atmosphere with 4% oxygen. Then the influence of Ta2O5 addition on the microstructure and temperature dependence of magnetic properties of MnZn ferrites was investigated by characterizing the fracture surface micrograph and measuring the magnetic properties over a temperature ranging from 25 to 120 °C. The results show that, when the Ta2O5 concentration is not more than 0.04wt%, the grain size has a slight increase with the increase of Ta2O5 concentration, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to lower temperature. However, excessive Ta2O5 concentration (>0.04wt%) results in the exaggerated grain growth and porosity increase, which make the initial permeability and saturation magnetic flux density decrease and the power loss increase at room temperature. Furthermore, the temperature of secondary maximum peak in the curve of initial permeability versus temperature and the lowest power loss shift to about 100 °C.  相似文献   

2.
(Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder prepared by high energy ball-milling process were consolidated by microwave and conventional sintering processes. Phases, microstructure and magnetic properties of the ferrites prepared by different processes were investigated. The (Mg0.476Mn0.448Zn0.007)(Fe1.997Ti0.002)O4 nanocrystalline powder could be prepared by high energy ball-milling process of raw Fe3O4, MnO2, ZnO, TiO2 and MgO powders. Prefired and microwave sintered ferrites could achieve the maximum density (4.86 g/cm−3), the average grain size (15 μm) was larger than that (10 μm) prepared by prefired and conventionally sintered ferrites with pure ferrite phase, and the saturation magnetization (66.77 emu/g) was lower than that of prefired and conventionally sintered ferrites (88.25 emu/g), the remanent magnetization (0.7367 emu/g) was higher than that of prefired and conventionally sintered ferrites (0.0731 emu/g). Although the microwave sintering process could increase the density of ferrites, the saturation magnetization of ferrites was decreased and the remanent magnetization of ferrites was also increased.  相似文献   

3.
The Ni-Cu-Zn ferrites with different contents of Bi4Ti3O12 ceramics (1-8 wt%) as sintering additives were prepared by the usual ceramic technology and sintered at 900 °C to adapt to the low temperature co-fired ceramic (LTCC) technology. The magnetic and dielectric properties of the ferrite can be effectively improved with the effect of an appropriate amount of Bi4Ti3O12. For all samples, the ferrite sintered with 2 wt% Bi4Ti3O12 has relatively high density (98.8%) and permeability, while the ferrite with 8 wt% Bi4Ti3O12 has relatively good dielectric properties in a wide frequency range. The influences of Bi4Ti3O12 addition on microstructure, magnetic and dielectric properties of the ferrite have been discussed.  相似文献   

4.
The microstructure and magnetic properties of SnO2-doped NiZn ferrites prepared by a solid-state reaction method have been investigated. Due to its low melting point (∼1127 °C), moderate SnO2 enhanced mass transfer and sintering by forming liquid phase, which accelerated the grain growth. However, excessive SnO2 producing much of liquid phase retarded mass transfer and sintering, leading to a decrease in grain size. The diffraction intensity of the samples doped with SnO2 addition was stronger than that of the sample without addition. The lattice constant initially decreased up to a content of 0.10 wt% and showed an increase at higher content up to 0.50 wt%. The initial permeability (μi) initially increased up to a content of 0.15 wt% and showed a decrease at higher content up to 0.50 wt%; however, losses (PL) measured at 50 kHz and 150 mT changed contrarily. Both saturation induction (BS) and Curie temperature (TC) decreased gradually with increasing SnO2. Finally, the sample doped with 0.10–0.15 wt% SnO2 showed the higher permeability and lower losses.  相似文献   

5.
The effects of sintering temperature and Bi2O3 content on the microstructure and magnetic properties of lithium–zinc (LiZn) ferrites prepared by a conventional ceramic method were investigated. The results show that the densification behavior and grain growth rate were greatly improved by the addition of Bi2O3, because a liquid phase sintering occurred during the sintering process at high temperature due to the low-melting point of Bi2O3 (825 °C). X-ray diffraction (XRD) patterns of the slightly doped samples did not reveal the appearance of any phase other than spinel LiZn ferrite. However, the secondary phase of perovskite BiFeO3 was detected for Bi2O3 content of more than 0.25 wt%. The studies further show that Bi oxide was present at grain boundary, and promoted the grain growth as reaction center at lower temperature. A high saturation magnetization, squareness ratio, minimum ferromagnetic resonance linewidth and low coercive force were obtained for the sample with 1.00 wt% Bi2O additive at lower sintering temperature (1100 °C).  相似文献   

6.
The Bi2O3-B2O3-ZnO-SiO2 (BB35SZ) glass effects on the sintering behavior and microwave magnetic properties of Cu-Bi-Zn co-doped Co2Z ferrites were investigated to develop low-temperature-fired ferrites. The glass wetting characteristics on the Co2Z ferrite surface, X-ray diffractometer, scanning electron microscopy and a dilatometer were used to examine the BB35SZ glass effect on Co2Z ferrite densification and the chemical reaction between the glass and Co2Z ferrites. The results indicate that BB35SZ glass can be used as a sintering aid to reduce the densification temperature of Co2Z ferrites from 1300 to 900 °C. 3(Ba0.9Bi0.1O)·2(Co0.8Cu0.2O)·12(Fe1.975Zn0.025O3) ferrite with 2 wt% BB35SZ glass can be densified below 900 °C, exhibiting an initial permeability of 3.4. This process provides a promising candidate for multilayer chip magnetic devices for microwave applications.  相似文献   

7.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

8.
The effect of P2O5 on infrared luminescence properties of bismuth-doped SiO2-Al2O3-CaO (SAC) glass was investigated. Under excitation of 690 and 808 nm LD, two infrared emissions from bismuth ions central at 1100 and 1300 nm were observed, respectively. The addition of P2O5 was not only found to lead to the increase of full width at half maximum (FWHM) of two infrared emissions, but also result in intensity variety of the infrared emissions. The intensity of the infrared emission located at 1300 nm is reduced by a factor of 2, while the luminescence at 1110 nm is increased by a factor of 5. We propose that the infrared emissions at 1100 and 1300 nm may originate from different valence Bi ion in glasses. Compared with emission at 1300 nm, the infrared emissions at 1100 nm is more possibly from the transition of lower valent Bi ion.  相似文献   

9.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

10.
Nanocrystalline Zn0.5Mn0.5Fe2O4 was synthesized through the pyrolysis of polyacrylate salt precursors prepared via in situ polymerization of the metal salts and acrylic acid. The pyrolysis behavior of the polymeric precursors was studied by use of thermal analysis. The as-obtained product was characterized by powder X-ray diffraction (XRD), transmission electron microscope (TEM), electron diffraction (ED) pattern, scanning electron microscopy (SEM) and electron dispersive X-ray (EDX) analysis. The results revealed that the particle size is in the range of 15–25 nm for Zn-Mn ferrites with good crystallinity. Magnetic properties of the sample at 300 K were measured using a vibrating sample magnetometer, which showed that the sample exhibited characteristics of superparamagnetism.  相似文献   

11.
To study surface behaviors, MgFe2O4 ferrite materials having different grain sizes were synthesized by two different chemical methods, i.e., a polymerization method and a reverse coprecipitation method. The single phase of the cubic MgFe2O4 was confirmed by the X-ray diffraction method for both the precursors decomposed at 600-1000 °C except for a very small peak of Fe2O3 was detected for the samples calcined at 600 and 700 °C by the polymerization method. The crystal size and particle size increased with an increase in the sintering temperature using both methods. The conductance of the MgFe2O4 decreased when the atmosphere was changed from ambient air to air containing 10.0 ppm NO2. The conductance change, C = G(air)/G(10 ppm NO2), was reduced with an increase in the operating temperature. For the polymerization method, the maximum C-value was ca. 40 at 300 °C for the samples sintered at 900 °C. However, the samples sintered at 1000 °C showed a low conductance change in the 10 ppm NO2 gas, because the ratio of the O2 gas adsorption sites on the particle surface is smaller than those of the samples having a high C-value. The low Mg content on the surface affects the low ratio of the gas adsorption sites. For the reverse coprecipitation method, the particle size was smaller than that of the polymerization method. Although a stable conductance was obtained for the sample sintered at 900 and 1000 °C, its conductance change was less than that of the polymerization method.  相似文献   

12.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

13.
Nb-doped Z-type hexaferrites (Ba3(Co0.4Zn0.6)2Fe24O41) with composition of Ba3(Co0.4Zn0.6)2Fe24O41+x Nb2O5 (where x=0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.2, 1.6 and 2.0 wt%) were prepared by a solid-state reaction method. The effects of different sintering temperature (Ts) and Nb2O5 content on the sintering behaviors, phase composing, microstructure, and magnetic properties of the samples were investigated. The results from X-ray diffraction and scanning electron microscopy show that as the amount of Nb2O5 additive increases, the major phase changes to Z-phase, Simultaneously, M-phase and a small amount of niobate phase appear. The Nb2O5 additive promotes the grain growth as reaction center at lower sintering temperature (1220 °C), but at higher temperature (1260 °C), niobate phase separated out in grain boundaries as secondary phase will restrain abnormal grain growth, so closed pores in grains are not formed. The Nb2O5 additive can enhance densification, improve initial permeability of hexaferrites by increasing the grain growth of hexaferrite and the displacement of ions in the sintering process due to the aberration and activation of crystal lattice, which is accompanied by the solubility of Nb5+ in the hexaferrites. A relative density of 96%, maximum initial permeability (32–33), minimum coercivity (454–455 A/m) and resonance frequency above 400 MHz were obtained for the sample with 0.8 wt% Nb2O5 sintered at 1260 °C for 6 h.  相似文献   

14.
The combined influence of a two-step sintering (TSS) process and addition of V2O5 on the microstructure and magnetic properties of NiZn ferrite was investigated. As comparison, samples prepared by the conventional single-step sintering (SSS) procedure were also studied. It was found that with 0.3 wt% V2O5 additive, the sample sintered by the two-step sintering process at a high temperature of 1250 °C for 30 min and a lower temperature of 1180 °C for 3 h exhibited more homogeneous microstructure and higher permeability with a high Q-factor. The results showed that the TSS method with suitable additive brought positive improvement of the microstructure and magnetic properties of NiZn ferrite.  相似文献   

15.
Photoluminescence (PL) enhancement of SrSi2O2N2:Eu and the resultant color improvement of white-light were investigated via co-doping Mn with Eu. We observed that a unique absorption of host lattice of SrSi2O2N2 and its visible band emission peaked at around ∼550 nm for SrSi2O2N2:Mn2+ in the wavelength range of 450-600 nm. This highly eye-sensitive ∼550 nm-peaked band emission of SrSi2O2N2 doped with Mn2+ happens to overlap the 535 nm-peaked band emission of SrSi2O2N2 doped with Eu2+, resulting in an intensified photoluminescence in a maximum by 355%. By combining this as-prepared Mn intensified SrSi2O2N2:Eu phosphor with blue InGaN chip, the quality of white-light was improved to 93.3% for color rendering index and 3584 K for correlated color temperature.  相似文献   

16.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

17.
We describe the structural properties and electrical characteristics of thin thulium oxide (Tm2O3) and thulium titanium oxide (Tm2Ti2O7) as gate dielectrics deposited on silicon substrates through reactive sputtering. The structural and morphological features of these films were explored by X-ray diffraction, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and atomic force microscopy, measurements. It is found that the Tm2Ti2O7 film annealed at 800 °C exhibited a thinner capacitance equivalent thickness of 19.8 Å, a lower interface trap density of 8.37 × 1011 eV−1 cm−2, and a smaller hysteresis voltage of ∼4 mV than the other conditions. We attribute this behavior to the Ti incorporated into the Tm2O3 film improving the interfacial layer and the surface roughness. This film also shows negligible degrees of charge trapping at high electric field stress.  相似文献   

18.
Physicochemical, surface and catalytic properties of pure and doped CuO/Fe2O3 system were investigated using X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), nitrogen adsorption at −196 °C and CO-oxidation by O2 at 80-220 °C using a static method. The dopants were Li2O (2.5 mol%) and CoO (2.5 and 5 mol%). The results revealed that the increase in precalcination temperature from 400 to 600 °C and Li2O-doping of CuO/Fe2O3 system enhanced CuFe2O4 formation. However, heating both pure and doped solids at 600 °C did not lead to complete conversion of reacting oxides into CuFe2O4. The promotion effect of Li2O dopant was attributed to dissolution of some of dopant ions in the lattices of CuO and Fe2O3 with subsequent increase in the mobility of reacting cations. CoO-doping led also to the formation of mixed ferrite CoxCu1−xFe2O4. The doping process of the system investigated decreased to a large extent the crystallite size of unreacted portion of Fe2O3 in mixed solids calcined at 600 °C. This process led to a significant increase in the SBET of the treated solids. Doping CuO/Fe2O3 system with either Li2O or CoO, followed by calcination at 400 and 600 °C decreased its catalytic activity in CO-oxidation by O2. However, the activation energy of the catalyzed reaction was not much affected by doping.  相似文献   

19.
Microwave-assisted synthesis of SrFe12O19 hexaferrites   总被引:1,自引:0,他引:1  
Ultra-fine and homogeneous SrFe12O19 hexaferrites were synthesized by a microwave-assisted calcination route. The calcined precursors were prepared by a sol-gel auto-combustion method using Fe(NO3)3·9H2O, Sr(NO3)2 and citric acid as starting materials. The structures, powder morphology and magnetic properties of the products were characterized by X-ray diffraction, scanning electron microscope and vibrating sample magnetometer. The results showed that microwaves are helpful to reduce the calcination temperature and shorten the calcination time. The ferrites with saturation magnetization, remanence and intrinsic coercivity of 54.80 emu/g, 29.52 emu/g and 5261 Oe, respectively, were obtained in samples calcined at 800 °C for 80 min.  相似文献   

20.
Phase formation, grain growth and magnetic properties of NiCuZn ferrites   总被引:1,自引:0,他引:1  
We studied the effects of iron-deficient, stoichiometric and iron-excessive compositions on the phase formation, crystal structure, grain growth and magnetic property of NiCuZn ferrites. As the Fe2O3 ratio increased from iron-deficiency 47.0 mol% to iron-excess 54.0 mol%, the X-ray diffraction peaks initially shifted towards lower angle and then moved to higher angle. Correspondingly, an initial increase in lattice parameter followed by a subsequent decrease was observed. The lattice parameter showed a maximum 8.396 Å when the Fe2O3 ratio was 49.0 mol%. When the system was iron-deficient, ZnO phase was detected in addition to the spinel phase. However, equimolar and iron-excessive compositions exhibited a single spinel phase. As the content of Fe2O3 increased, the grain size, density, saturation induction and initial permeability first increased and then decreased. Core losses at 50 kHz and 150 mT, however, changed in the opposite way. Finally, NiCuZn ferrite with an equimolar composition (50.0 mol%) showed the highest initial permeability (1467), highest saturation induction (361 mT) and lowest core losses (234 kW/m3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号