首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the thermal expansion and magnetostriction of polycrystalline samples of GdMn6Sn6 intermetallic compound with hexagonal HfGe6Fe6-type structure in the temperature range of 77-520 K. The thermal expansion measurement of the sample shows anomalous behavior around its TC=434 K and TM=309 K, possibly the point of collapse-like reduction of Mn moments. In addition, the isofield curves of anisotropic and volume magnetostriction reveal anomalies around paramagnetic to ferrimagnetic phase transition. The obtained experimental results are discussed in the framework of two-magnetic sublattices by bearing in mind the lattice parameter dependence of interlayer Mn-Mn exchange interaction in this layered compound. From the temperature dependence of magnetostriction values and considering the magnetostriction relation of a hexagonal structure, we attempt to determine the signs of some of the magnetostriction constants as well as a comparison of their orders of magnitude for this compound.  相似文献   

2.
Magnetoelastic properties of Nd6Fe13Cu intermetallic compound are reported. To study the magnetoelastic behaviour of this compound, the thermal expansion as well as the longitudinal (λl) and transverse (λt) magnetostriction were measured by using the strain gauge method in the selected temperature range of 80-500 K under applied magnetic fields up to 1.5 T. An anomaly and invar-type effects are observed in the linear thermal expansion and α(T) curves at the Néel temperature. The linear spontaneous magnetostriction decreases sharply by approaching the Néel temperature and also shows the short-range magnetic ordering effects when antiferromagnetic-paramagnetic transition occurs. In the low field region, the absolute values of the anisotropic magnetostriction are small and then start to increase with applied magnetic field. Each isofield curve of the anisotropic magnetostriction passes through a minimum and then approaches to zero with increasing temperature. This magnetostriction compensation arises from the difference in the magnetoelastic coupling constants of the sublattices in this compound.  相似文献   

3.
Magnetization and neutron diffraction studies have been performed on Ce4Sb3 compound (cubic Th3P4-type, space group I4¯3d, no. 220). Magnetization of Ce4Sb3 reveals a ferromagnetic transition at ∼5 K, the temperature below which the zero-field-cooled and field-cooled magnetization bifurcate in low applied fields. However, a saturation magnetization (MS) value of only ∼0.93μB/Ce3+ is observed at 1.8 K, suggesting possible presence of crystal field effects and a paramagnetic/antiferromagnetic Ce3+ moment. Magnetocaloric effect in this compound has been computed using the magnetization vs. field data obtained in the vicinity of the magnetic transition, and a maximum magnetic entropy change, −ΔSM, of ∼8.9 J/kg/K is obtained at 5 K for a field change of 5 T. Inverse magnetocaloric effect occurs at ∼2 K in 5 T indicating the presence of antiferromagnetic component. This has been further confirmed by the neutron diffraction study that evidences commensurate antiferromagnetic ordering at 2 K in zero magnetic field. A magnetic moment of ∼1.24μB/Ce3+ is obtained at 2 K and the magnetic moments are directed along Z-axis.  相似文献   

4.
A number of compounds of structural formula RRu4Sn6 (R=rare-earth element) have previously been reported to form in the tetragonal crystal structure with space group I4¯2m. In this structure the R atoms are well isolated from each other. We embarked on this study to investigate the physical properties and to compare with earlier results obtained on the strongly correlated, low charge-carrier density compound CeRu4Sn6. Here we report our results of crystallographic, electrical resistivity, and magnetic studies on this family of compounds. In contrast to the behaviour in CeRu4Sn6, magnetic ordering is evident at low temperatures in the compounds with R=Sm, Gd, and Dy, as is evidenced by well-resolved anomalies in the temperature dependence of the electrical resistivity and static magnetic susceptibility.  相似文献   

5.
The equilibrium lattice constants, cell volumes, densities of states and electron density distributions of LaNi4.5Sn0.5 crystal are evaluated by the density functional theory using the plane wave pseudopotential (PW-PP) method. The quasi-harmonic Debye model, using a set of total energy versus cell volume obtained from the PW-PP method, is applied to the study of thermal and vibrational effects. We have analyzed the bulk modulus of LaNi4.5Sn0.5 as a function of temperature up to 1000 K. The thermodynamic properties such as thermal expansion coefficients and heat capacities are also predicted using the quasi-harmonic Debye model. Significant differences in properties are observed at high temperatures and pressures. Moreover, the Debye temperatures are determined from the non-equilibrium Gibbs functions. The calculated results are in excellent agreement with the available experimental data, and compared favorably with other theoretical results.  相似文献   

6.
The magnetoelastic properties of iron-rich REFe10V2 (RE=Nd, Y) compounds were studied via magnetostriction and thermal expansion measurements in the 5–300 K range of temperature in up to 6 T external fields. Results of thermal expansion analysis show that the spontaneous magnetostriction of the compounds mostly originates from itinerant magnetization. Besides, the small volume striction appearing in the thermal expansion of the Nd compound close to 50 K suggests the existence of a basal to conical spin re-orientation transition. The volume magnetostriction isotherms of both compounds take minimum values for external field corresponding to the anisotropy field. In addition, the anisotropic and the volume magnetostriction traces of the NdFe10V2 take marked maxima under low field, with a relatively large initial magnetostrictivity, again more pronounced at the conical–axial spin re-orientation transition (TSR=130 K). Analysis of the anisotropic magnetostriction of the Nd compound leads to the conclusion that the contribution of Nd–Fe interactions is negligible. The temperature dependence of volume magnetostriction is in good agreement with prediction of a phenomenological model based upon a fluctuating local band theory. This analysis shows that the difference between the forced volume strictions of Y and Nd compounds below and above TSR originates from the Nd sublattice magnetization.  相似文献   

7.
The HfFe6Ge6-type compounds Gd0.8L0.2Mn6Sn6 and Tb0.8L0.2Mn6Sn6 (L = Sc, Y, Lu) have been studied by 119Sn Mössbauer spectroscopy. The values of the apparent quadrupolar splitting clearly evidence the easy plane magnetization of the gadolinium compounds and the easy axis one in the terbium compounds. The three tin sites behave differently with the nature and size of the substituting L element. For a given series, the hyperfine field of the Sn2d site is almost unchanged whatever the size of the L element. The hyperfine field of the Sn2e site strongly varies with the L size in relation with atomic displacements. The hyperfine field of the Sn2c site exhibits a more complicated behavior. The field difference in the easy plane and easy axis compounds confirms the angle-dependent anisotropic contribution of the Mn moment to the hyperfine field. The analysis of the results also suggests the play of angle-dependent contributions arising from the rare earth moment.  相似文献   

8.
A modified Yafet-Kittle model is applied to investigate the magnetic properties and magnetic phase transition of the intermetallic compound GdMn_2Ge_2. Theoretical analysis and calculation show that there are five possible magnetic structures in GdMn_2Ge_2. Variations of external magnetic field and temperature give rise to the first-order or second-order magnetic transitions from one phase to another. Based on this model, the magnetic curves of GdMn_2Ge_2 single crystals at different temperatures are calculated and a good agreement with experimental data has obtained. Based on the calculation, the H-T magnetic phase diagrams of GdMn_2Ge_2 are depicted. The Gd-Gd, Gd-Mn, intralayer Mn-Mn and interlayer Mn-Mn exchange coupling parameters are estimated. It is shown that, in order to describe the magnetic properties of GdMn_2Ge_2, the lattice constant and temperature dependence of interlayer Mn-Mn exchange interaction must be taken into account.  相似文献   

9.
In this work, The magnetoelastic properties of polycrystalline samples of Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) intermetallic compounds are investigated by means of linear thermal expansion and magnetostriction measurements in the temperature range of 77–515 K under applied magnetic fields up to 1.5 T. The linear thermal expansion increases with the Co content. The well-defined anomalies observed in the linear thermal expansion coefficients for Tb3 (Fe28−xCox) V1.0 (x=0, 3, 6) compounds are associated with the magnetic ordering temperature for x=0 and spin reorientation temperatures for x=3, 6. Below transition temperatures, the value of the longitudinal magnetostriction (λPa) at 1.6 T increases with Co content.  相似文献   

10.
The magnetic and magnetocaloric properties of the R6Mn23 compounds (R=Y, Nd, Sm, Gd-Tm, Lu) are investigated from DC magnetization measurements. The results are analyzed and discussed in connection with previously published data. These binaries crystallize in the cubic Th6Mn23 type of structure (Fm-3m). The Mn sublattice orders at high temperature (398 K≤TC≤505 K) with a collinear ferrimagnetic structure. The R sublattice orders at lower temperature (<100 K) with a non-collinear arrangement. By opposition with the usual behaviour in intermetallics, light rare-earth compounds (R=Nd and Sm) have a lower ground state magnetization than the heavy rare-earth compounds (R=Gd-Tm). This manifests in their magnetocaloric response near the R ordering temperature: the compounds with R=Gd-Tm display a normal magnetocaloric effect of moderate magnitude (<50 mJ cm−3 K−1 for a field variation of 5 T) while those with R=Nd and Sm present an inverse magnetocaloric effect of weaker magnitude. The potential interest of these phases for cooling applications is briefly discussed.  相似文献   

11.
La0.7Sr0.3Mn1−xCoxO3 (x=0, 0.05, 0.1) nanoparticles, prepared by sol-gel method, were studied by means of X-ray diffraction, transmission electron microscopy, resistivity, magnetoresistance, thermal expansion and magnetostriction measurements. Results show that partial substitution of Mn by Co leads to a reduction in lattice parameters, enhancement of resistivity and room temperature magnetoresistance MR, decrease of metal-insulator transition temperature TMI and TC, an increase in thermal expansion coefficient, volume magnetostriction and anisotropic magnetostriction. The latter increases about one order of magnitude with 10% Co substitution. In comparison with Mn ions, the Co ions possess higher anisotropy energy, larger magnetostriction effect, smaller ionic size and spin state transitions with increase in temperature and magnetic field; this suggests that Co substitution leads to double-exchange interaction weakening, resulting in suppression of ferromagnetic long-range order and metallic state and increase of magnetic anisotropy. Furthermore, our samples have a relatively lower TMI and TC, higher resistivity and MR, compared with the reported values for similar compounds with larger particle sizes. This is attributed to the nanometric grain size and spin-polarized tunneling between neighboring grains.  相似文献   

12.
Magnetic and magnetocaloric properties of the compound Ce5Ge4 have been studied. This compound has orthorhombic Sm5Ge4-type structure (space group Pnma, no. 62) and orders ferromagnetically at ~12 K (TC). The paramagnetic Curie temperature is ~−20 K suggesting the presence of competing ferromagnetic and antiferromagnetic interactions in this compound. The magnetization does not seem to saturate even in fields of 90 kOe at 3 K consistent with the presence of competing interactions. Saturation magnetization value (extrapolated to 1/H→0) of only 0.8μB/Ce3+ is obtained compared to the free ion value of 2.14μB/Ce3+. This moment reduction in the ordered state of Ce5Ge4 could be due to partial antiferromagnetic/paramagnetic ordering of the Ce moments and may also be due to crystalline electric field effects. Magnetic entropy change near TC, calculated from the magnetization vs. field data, is found to be moderate with a maximum value of ~9 J/kg/K at ~11 K for a field change of 90 kOe.  相似文献   

13.
王芳  沈保根  张健  孙继荣  孟凡斌  李养贤 《中国物理 B》2010,19(6):67501-067501
Magnetic properties and magnetocaloric effect of compound PrFe 12 B 6 are investigated.The coexistence of hard phase PrFe 12 B 6 and soft phase α-Fe causes interesting phenomena on the curves for the temperature dependence of magnetization.PrFe 12 B 6 experiences a first order phase transition at the Curie temperature 200 K,accompanied by an obvious lattice contraction,which in turn results in a large magnetic entropy change.The Maxwell relation fails to give the correct information about magnetic entropy change due to the first order phase transition nature.The large magnetic entropy changes of PrFe 12.3 B 4.7 obtained from heat capacity method are 11.7 and 16.2 J/kg.K for magnetic field changes of 0-2 T and 0-5 T respectively.  相似文献   

14.
The C15 Laves phases with composition Nd1−xPrx(Fe0.35Co0.55B0.1)2 (0?x?1) have been synthesized by arc melting and subsequent annealing. The Curie temperature Tc and the saturation magnetizations Ms at 5 and 295 K decrease with increasing Pr content. The linear anisotropic magnetostriction λa=λλ at room temperature for Nd1−xPrx(Fe0.35Co0.55B0.1)2 alloys with 0?x?0.4 initially reaches a negative minimum, then increases and changes its sign with increasing magnetic field H, and the λa for the alloys with x?0.6 is positive and increases as magnetic field H increases.  相似文献   

15.
Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn–Mn and Mn–R exchange interactions.  相似文献   

16.
Experimental results on the thermal expansion and magnetostriction of YFe12−xVx (1.5≤x≤3.5) alloys are reported. The results show that the anisotropic magnetostriction (Δλ) at a finite field (1.5 T) increases with increasing vanadium content in the range of x<2. But for x>2, a decrease in the magnetic anisotropy with increasing vanadium content causes a decrease in the saturation values of Δλ. In addition, the thermal expansion coefficient becomes a minimum for x≈2. Experimental curves exhibit that the forced volume magnetostriction (ΔV/V) is positive and increases linearly with the applied field at high fields. But in the low field region (≤0.5 T), a minimum appears in the isothermal curves of ΔV/V around the saturation field. The results are explained by considering the influence of vanadium content on the magnetization anisotropy of YFe12−xVx compounds.  相似文献   

17.
The first-order phase transitions in NdFe12B6 and PrFe12B6 alloys give rise to giant values of magnetic entropy changes in relatively low field. However, the metastable nature of these alloys associates with a special procedure of preparation and considerable amount of impurities inevitably. By alloying NdFe12B6 with the iso-structural compound of NdCo12B6 appropriately, a Nd(Co1−xFex)12B6 system which possesses the stable SrNi12B6-type structure can be obtained directly via the standard casting-and-annealing method. Remarkably improved thermal and magnetic reversibility are observed in the present system. The second-order phase transitions in NdCo12B6 alloy give rise to the relative cooling power, which is comparable with that of NdFe12B6 alloy around the ordering temperature.  相似文献   

18.
The structure, magnetic and magnetostrictive properties of Sm0.88Nd0.12(Fe1−xCox)1.93 (0≤x≤1.0) alloys have been investigated. The alloys have the cubic MgCu2 structure over the whole composition range and the lattice parameter a decreases with increasing x. For 0≤x≤0.2, substitution of Co for Fe slightly increases the saturation magnetization Ms and Curie temperature Tc, while further substitution causes a decrease in both Ms and Tc. The spin reorientation is observed, and a phase diagram for the spin configurations of the Sm0.88Nd0.12(Fe1−xCox)1.93 system is determined. The spontaneous magnetostriction λ111 increases as x is increased, while a monotonic decrease of the saturation magnetostriction λs with x originates from the increase of λ100 with opposite sign to that of λ111, which may be caused by the filling of the d band due to Co substitution.  相似文献   

19.
郝延明  谭明  王薇  王芳 《中国物理 B》2010,19(6):67502-067502
The structural and the magnetic properties of Gd 2 Fe 16 Cr compound are investigated by x-ray diffraction and magnetization measurements.The Gd 2 Fe 16 Cr compound has a rhombohedral Th 2 Zn 17-type structure.There exist an anisotropic strong spontaneous magnetostriction and a negative thermal expansion in the magnetic state of Gd 2 Fe 16 Cr compound.The average thermal expansion coefficient ā=-7.03 × 10-6 /K in a temperature range of 294-454 K and ā=-1.31 × 10-5 /K in 454-572 K are obtained.The spontaneous magnetostrictive deformation and the Curie temperature are discussed.  相似文献   

20.
We report temperature dependent heat capacity and magnetization measurements on single crystals of Nd1-xLaxRhIn5 (x=0.15, 0.4 and 0.5) and NdRhIn5-xSnx (x=0.08, 0.12 and 0.24). NdRhIn5 is an antiferromagnetic (AFM) compound with TN≈ 11 K which crystallizes in the same layered tetragonal structure of the CeMIn5 family (M=Rh, Co and Ir), where different ground states can be found by tuning the interplay among different microscopic interactions such as the Kondo effect, crystal field (CEF) effects and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) magnetic interaction. Here, we explore the evolution of the AFM correlations in this Nd-based (non-Kondo) compound while perturbing the RKKY exchange by using two different substitutions: (i) replacing Nd3+ by non-magnetic La3+ within NdIn3 atomic planes (dilution) and (ii) substituting In by Sn in the In-sites (electronic tuning). For both types of doping, our results show the suppression of the AFM state as the La- or Sn-content is increased. This doping induced suppression of the AFM order is discussed considering the effects of dilution and effects in the tetragonal CEF using a mean-field model applied to the observed data. Our results are compared to the properties of other members of the RRhIn5 family considering the role of dimensionality in the magnetic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号