首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
I. Goldfarb 《Surface science》2007,601(13):2756-2761
In this work, shapes and shape transitions of several types of self-assembled heteroepitaxial nanostructures, as observed in in situ scanning tunneling microscopy experiments during growth, are examined in the framework of several equilibrium and kinetic models. In particular, heteroepitaxial TiSi2 and CoSi2 islands on Si(1 1 1) are shown to behave in accordance with generalized Wulff-Kaishew theorem of equilibrium strained and supported crystal shapes. More specifically, these silicide nanocrystals exhibit out-of-plane thickening shape transition by increasing their vertical aspect ratio with growth, as long as they are strained, and inverse (flattening) transition upon relaxation by misfit dislocations. On the other hand, heteroepitaxial Ge and CoSi2 islands on Si(0 0 1) are well-known for their in-plane anisotropic elongation. Plausible energetic and kinetic reasons for such elongation, based on the unique nucleation features of Ge-hut/Si(0 0 1) and non-planar CoSi2-hut/Si(0 0 1) interface, are discussed.  相似文献   

2.
Scanning tunneling microscopy (STM) is used to study the basic laws of growth of ultrathin epitaxial CoSi2(111) films with Co coverages up to 4 ML formed upon sequential deposition of Co and Si atoms taken in a stoichiometric ratio onto the Co–Si(111) surface at room temperature and subsequent annealing at 600–700°C. When the coverage of Co atoms is lower than ~2.7 ML, flat CoSi2 islands up to ~3 nm high with surface structure 2 × 2 or 1 × 1 grow. It is shown that continuous epitaxial CoSi2 films containing 3–4 triple Si–Co–Si layers grow provided precise control of deposition. CoSi2 films can contain inclusions of the local regions with (2 × 1)Si reconstruction. At a temperature above 700°C, a multilevel CoSi2 film with pinholes grows because of vertical growth caused by the difference between the free energies of the CoSi2(111) and Si(111) surfaces. According to theoretical calculations, structures of A or B type with a coordination number of 8 of Co atoms are most favorable for the CoSi2(111)2 × 2 interface.  相似文献   

3.
In this work, we have studied thermal stability of nanoscale Ag metallization and its contact with CoSi2 in heat-treated Ag(50 nm)/W(10 nm)/Co(10 nm)/Si(1 0 0) multilayer fabricated by sputtering method. To evaluate thermal stability of the systems, heat-treatment was performed from 300 to 900 °C in an N2 ambient for 30 min. All the samples were analyzed by four-point-probe sheet resistance measurement (Rs), Rutherford backscattering spectrometry (RBS), X-ray diffractometry (XRD), and atomic force microscopy (AFM). Based on our data analysis, no interdiffiusion, phase formation, and Rs variation was observed up to 500 °C in which the Ag layer showed a (1 1 1) preferred crystallographic orientation with a smooth surface and Rs of about 1 Ω/□. At 600 °C, a sharp increase of Rs value was occurred due to initiation of surface agglomeration, WSi2 formation, and interdiffusion between the layers. Using XRD spectra, CoSi2 formed at the Co/Si interface preventing W silicide formation at 750 and 800 °C. Meantime, RBS analysis showed that in this temperature range, the W acts as a cap layer, so that we have obtained a W encapsulated Ag/CoSi2 contact with a smooth surface. At 900 °C, the CoSi2 layer decomposed and the layers totally mixed. Therefore, we have shown that in Ag/W/Co/Si(1 0 0) multilayer, the Ag nano-layer is thermally stable up to 500 °C, and formation of W-capped Ag/CoSi2 contact with Rs of 2 Ω/□ has been occurred at 750-800 °C.  相似文献   

4.
K. Ma 《Applied Surface Science》2005,252(5):1679-1684
The effect of Ni interlayer on stress level of cobalt silicides was investigated. The X-ray diffraction patterns (XRD) show that low temperature formation of Co1−xNixSi2 solid solution was obtained while Ni interlayer was present in Co/Si system, which was confirmed by Auger electron spectrum (AES) and sheet resistance measurement. XRD was also used to measure the internal stress in CoSi2 films by a 2θψ − sin2ψ method. The result shows that the tensile stress in CoSi2 films evidently decreased in Co/Ni/Si(1 0 0) system. The reduction of lattice mismatch, due to the presence of Ni in CoxNi1−xSi2 solid solution, is proposed to explain this phenomenon.  相似文献   

5.
Solid-phase formation of ultrathin CoSi2 layers on Si(100)2×1 was studied using high-resolution (~140 meV) photoelectron spectroscopy with synchrotron radiation (hν=130 eV). The evolution of Si 2p spectra was recorded both under deposition of cobalt on the surface of samples maintained at room temperature and in the course of their subsequent annealing. It was shown that Co adsorption on Si(100)2×1 is accompanied by a loss of reconstruction of the original silicon surface while not bringing about the formation of a stable CoSi2-like phase. As the amount of deposited cobalt continues to increase (up to six monolayers), a discontinuous film of the Co-Si solid solution begins to grow on the silicon surface coated by chemisorbed cobalt. The solid-phase reaction of CoSi2 formation starts at a temperature close to 250°C and ends after the samples have been annealed to ~350°C.  相似文献   

6.
In this investigation, the crystalline structure of a nanometric CoSi2 layer, formed in heat treated Co/WxTa(1−x)/Si(1 0 0) systems, has been studied by XRD analysis. Careful measurements of the diffraction intensities revealed that temporary formation of a metastable diamond cubic structure of CoSi2 phase, rather than its usual CaF2 structure, was occurred. It has been shown that formation of this metastable structure depends on the kind of the applied interlayer in addition to the annealing temperature. Among the studied systems with x = 0, 0.25, 0.5, 0.75 and 1, the second and the last systems resulted in growing a (1 0 0) single-texture CoSi2 layer with the preferred usual CaF2 structure, a strained lattice parameter, and the best thermal stability (900-1000 °C).  相似文献   

7.
Co-silicides were prepared with several techniques, such as annealing of evaporated Co-layers on a Si-substrate (silicide surface layers) and annealing of Co-implanted Si (buried silicide layers). By adding some57Co to the stable59Co, the formation of the various Co-silicides could clearly be followed as a function of annealing temperature by means of Mössbauer spectroscopy. In the case of surface silicide layers, Co2Si, CoSi and CoSi2 were formed subsequently. In the case of buried layers however, CoSi2 was the only crystalline phase that could be observed. In both cases, the CoSi2 spectra showed an anomalous side resonance. Moreover, it was found that when57Fe was implanted (instead of57Co), a drastic increase in the intensity of this side resonance could be detected by CEMS.  相似文献   

8.
Using a newly developed solid phase epitaxy technique (SPE) it is shown that ultrathin essentially pinhole-free CoSi2 layers can be grown epitaxially on Si (111). These form the basis of a number of short period metal/semiconductor superlattices that have been grown by combining SPE-grown CoSi2 with MBE-grown Si. Substrate temperatures for Si-MBE have to be chosen very low (≈ 350 °C) in order to avoid a roughening of the layers.  相似文献   

9.
Co/Si systems were ion beam mixed at 77 K using a 100 keV Ar beam. The formation of different phases as a function of irradiation dose has been studied, using Mössbauer spectroscopy (MS) and Rutherford backscattering spectroscopy (RBS). It was found that Co2Si, CoSi and CoSi2 are formed subsequently in parallel layers. After high dose irradiation, a phase with stoichiometry Co∶Si equal to 1∶3 was observed, suggesting CoSi3 has been formed. However, MS gave clear evidence that this phase consists of precipitates of CoSi2 and Si. Finally, we found that the amount of mixing scales linearly with the square root of the fluence, with a mixing rate of 1.0×104Å4.  相似文献   

10.
Changes in the parameters of the crystal lattice and energy bands of CoSi2 nanofilms and nanocrystals formed in the surface Si layers by ion implantation combined with annealing are studied. It is shown that the band gap E g of CoSi2/Si(100) nanofilms with the thickness θ ≤ 40–50 Å is higher by ~0.1 eV than for “thick” films; in the case of nanocrystals, E g is 0.3–0.4 eV higher than for macrocrystals.  相似文献   

11.
《Surface science》1997,381(1):L546-L550
Thin co-deposited CoSi2 films grown at 500–600°C on Si(100) are studied by scanning tunneling microscopy (STM). With a Si rich deposition we observe initially the formation of elongated three-dimensional CoSi2 islands. The use of one preadsorbed atomic layer of As as a surfactant results in a drastic increase of the island density. This effect appears to be a consequence of a decreased rate of surface diffusion of Co and Si. At higher coverages the roughness of the CoSi2 film is reduced considerably by the surfactant. The results are discussed with regard to the method of allotaxy which allows the fabrication of buried silicide layers. Here, the requirements for small precipitates and high growth temperature can possibly be met more efficiently using As as a surfactant.  相似文献   

12.
We perform first-principle calculations to study the geometric and electronic structures of cobalt silicide (CoSi2) nanosheet and nanotubes. The structure of layered CoSi2 is characterized by a CoSi2 nanosheet, analogous to the (1 1 1) surface of CoSi2 crystal. The strain energy involved in rolling up a CoSi2 nanosheet to CoSi2 nanotubes is very low. Both the CoSi2 nanosheet and nanotubes are energetically stable. CoSi2 nanotubes prefer to form bundles to further release strain energy. All CoSi2 nanotubes exhibit uniformly metallicity and steady work functions, independent of tube chirality.  相似文献   

13.
In this paper we investigate the formations and morphological stabilities of Co-silicide fihns using 1-8-nm thick Co layers sputter-deposited on silicon (100) substrates. These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450 ℃ to 850 ℃. For a Co layer with a thickness no larger than i nm, epitaxially aligned CoSi2 films readily grow on silicon (100) substrate and exhibit good morphological stabilities up to 600 ℃. For a Co layer thicker than 1 nm, polycrystalline CoSi and CoSi2 films are observed. The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon (100) substrate. The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

14.
The growth of cobalt disilicide on the Si(100) surface by reactive epitaxy at T=350°C was studied within the 10–40 ML cobalt coverage range. A new method of mapping the atomic structure of the surface layer by inelastically scattered medium-energy electrons was employed. The films thus formed were shown to consist of CoSi2(221) grains of four azimuthal orientations turned by 90° with respect to one another. This domain structure originates from substrate surface faceting by (111) planes, a process occurring during silicide formation. B-oriented CoSi2(111) layers grow epitaxially on (111) facets.  相似文献   

15.
The variations in the composition and structure of CoSi2/Si(111) surface layers under Ar+ ion bombardment with subsequent annealing has been studied. It has been demonstrated that nanocluster phases enriched with Si atoms form on the CoSi2 surface at low doses D ≤ 1015 cm–2, and a pure Si nanofilm forms at high doses.  相似文献   

16.
A study of the mechanism governing the initial stages in silicide formation under deposition of 1–10 monolayers of cobalt on a heated Si(111) 7×7 crystal is reported. The structural data were obtained by an original method of diffraction of inelastically scattered medium-energy electrons, which maps the atomic structure of surface layers in real space. The elemental composition of the near-surface region to be analyzed was investigated by Auger electron spectroscopy. Reactive epitaxy is shown to stimulate epitaxial growth of a B-oriented CoSi2(111) film on Si(111). In the initial stages of cobalt deposition (1–3 monolayers), the growth proceeds through island formation. The near-surface layer of a CoSi2(111) film about 30 Å thick does not differ in elemental composition from the bulk cobalt disilicide, and the film terminates in a Si-Co-Si monolayer triad.  相似文献   

17.
We have investigated the phase separation and silicon nanocrystal (Si NC) formation in correlation with the optical properties of Si suboxide (SiOx, 0 < x < 2) films by thermal annealing in high vacuum. The SiOx films were deposited by plasma-enhanced chemical vapor deposition at different nitrous oxide/silane (N2O/SiH4) flow ratios. The as-deposited films show increased Si concentration with decreasing N2O/SiH4 flow ratio, while the deposition rate and surface roughness have strong correlations with the flow ratio in the N2O/SiH4 reaction. After thermal annealing at temperatures above 1000 °C, Fourier transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy manifest the progressive phase separation and continuous growth of crystalline-Si (c-Si) NCs in the SiOx films with increasing annealing temperature. We observe a transition from multiple-peak to single peak of the strong red-range photoluminescence (PL) with increasing Si concentration and annealing temperature. The appearance of the single peak in the PL is closely related to the c-Si NC formation. The PL also redshifts from ∼1.9 to 1.4 eV with increasing Si concentration and annealing temperature (i.e., increasing NC size). The good agreements of the PL evolution with NC formation and the PL peak energy with NC size distribution support the quantum confinement model.  相似文献   

18.
Relaxed step-graded buffer layers of Si1?xGex/Si(001) heterostructures with a low density of threading dislocations are grown through chemical vapor deposition at atmospheric pressure. The surface of the Si1?xGex/Si(001) (x ~ 25%) buffer layers is subjected to chemical mechanical polishing. As a result, the surface roughness of the layers is decreased to values comparable to the surface roughness of the Si(001) initial substrates. It is demonstrated that Si1?xGex/Si(001) buffer layers with a low density of threading dislocations and a small surface roughness can be used as artificial substrates for growing SiGe/Si heterostructures of different types through molecular-beam epitaxy.  相似文献   

19.
A one- and multiphonon Raman scattering study is performed for an extensive set of CdS1–xSex, Cd1–yZnyS, Cd1–yZnySe, and CdSe1–xTex nanocrystals to investigate the applicability of first- and second-order Raman spectra for the determination of the matrix-embedded ternary nanocrystal composition. For one-mode ternary systems both the LO and 2LO phonon frequencies in the Raman spectra are shown to be a good measure of the nanocrystal composition. For two-mode systems, the approaches based on the difference of the LO phonon frequencies (first-order Raman spectra) or double LO overtone and combination tone frequencies (second-order Raman spectra) as well as on the LO phonon band intensity ratios are analysed. The weak electron–phonon coupling in the II–VI nanocrystals and the polaron constant values for the nanocrystal sublattices are discussed.  相似文献   

20.
We perform first-principle calculations to study the geometric and electronic structures of cobalt silicide (CoSi2) nanosheet and nanotubes. The structure of layered CoSi2 is characterized by a CoSi2 nanosheet, analogous to the (1 1 1) surface of CoSi2 crystal. The strain energy involved in rolling up a CoSi2 nanosheet to CoSi2 nanotubes is very low. Both the CoSi2 nanosheet and nanotubes are energetically stable. CoSi2 nanotubes prefer to form bundles to further release strain energy. All CoSi2 nanotubes exhibit uniformly metallicity and steady work functions, independent of tube chirality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号