首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
用原子力显微镜和光学显微镜观测酸蚀后熔石英亚表面划痕,并根据形貌特征将其分为Boussinesq-point-force crack(BPFC)、Hertzian-conical scratch(HCS)和Plastic indent(PI)三类,测试了各类划痕的损伤阈值,讨论了激光损伤机制。结果表明锐度较大的BPFC损伤阈值不超过2.0 J/cm<>2;深度小于1 μm的 HCS阈值可达2.6 J/cm2;形变较大的PI阈值至2.8 J/cm2,形变较小的PI的激光损伤阈值与无缺陷材料相当。BPFC 和深度超过1 μm的HCS是导致熔石英损伤阈值低的主要因素。  相似文献   

2.
酸蚀深度对熔石英三倍频激光损伤阈值的影响   总被引:6,自引:3,他引:3       下载免费PDF全文
 采用干涉仪和台阶仪测试蚀刻深度随时间的变化,结合材料去除速率测量,研究了HF酸蚀液对熔石英表面蚀刻的影响。测试了蚀刻后损伤阈值和表面粗糙度的变化。研究表明,熔石英表面重沉积层厚度约16 nm,亚表面缺陷层大于106 nm;重沉积层去除后损伤阈值增大,随亚表面缺陷层暴露其阈值先降低后又增加,最后趋于稳定;然而,随蚀刻时间的增加,其表面粗糙度增大。分析表明,蚀刻到200 nm能有效地提高熔石英的低损伤阈值,有利于降低初始损伤点数量和提高熔石英表面的机械强度。  相似文献   

3.
用HF酸刻蚀熔石英元件,研究刻蚀对元件后表面划痕的形貌结构及损伤性能的影响,探索损伤阈值提升的原因.时域有限差分算法理论计算结果表明:对于含有50 nm直径氧化锆颗粒的划痕,对入射光调制引发场增强的最大值是入射光强的6.1倍,且最强点位于划痕内部氧化锆颗粒附近,而结构相同但不含杂质的划痕引发的最大场增强为入射光强的3.6倍,最强区位于划痕外围;HF酸刻蚀能够有效去除划痕中的杂质,改变划痕结构,增加其宽深比值,经刻蚀的划痕对入射光调制引发场增强降低到入射光强的2.2倍.实验结果表明,经过深度刻蚀的划痕初始损伤阈值较刻蚀之前提高一倍多;光热弱吸收测试仪测试刻蚀后划痕对1 064 nm激光的吸收最大值仅为230 ppm.HF酸刻蚀同时可以提升元件整体损伤阈值,由于元件上无缺陷区域损伤阈值随刻蚀的深入先增加后降低,因此HF酸刻蚀应进行到元件损伤阈值提升到最大值为止.  相似文献   

4.
用HF酸刻蚀熔石英元件,研究刻蚀对元件后表面划痕的形貌结构及损伤性能的影响,探索损伤阈值提升的原因.时域有限差分算法理论计算结果表明:对于含有50nm直径氧化锆颗粒的划痕,对入射光调制引发场增强的最大值是入射光强的6.1倍,且最强点位于划痕内部氧化锆颗粒附近,而结构相同但不含杂质的划痕引发的最大场增强为入射光强的3.6倍,最强区位于划痕外围;HF酸刻蚀能够有效去除划痕中的杂质,改变划痕结构,增加其宽深比值,经刻蚀的划痕对入射光调制引发场增强降低到入射光强的2.2倍.实验结果表明,经过深度刻蚀的划痕初始损伤阈值较刻蚀之前提高一倍多;光热弱吸收测试仪测试刻蚀后划痕对1 064nm激光的吸收最大值仅为230ppm.HF酸刻蚀同时可以提升元件整体损伤阈值,由于元件上无缺陷区域损伤阈值随刻蚀的深入先增加后降低,因此HF酸刻蚀应进行到元件损伤阈值提升到最大值为止.  相似文献   

5.
利用SAGA-S激光器输出的355 nm波长激光,研究了熔石英表面铜颗粒污染的激光损伤规律。采用磁控溅射的方式在洁净熔石英表面制备不同尺寸的颗粒状污染物,用1-on-1,10-on-1,20-on-1的方式测试经污染后的熔石英基底的损伤阈值,并采用光学显微镜观察损伤形貌、CCD在线测量损伤斑尺寸。结果表明:污染后的熔石英基底的损伤主要发生在后表面,而且以热烧蚀和热应力为主,基底的损伤阈值与熔石英前表面污染颗粒尺寸呈负指数关系,随后表面污染物颗粒尺寸的增大呈略微下降。前表面颗粒污染物诱导损伤斑尺寸为颗粒污染物尺寸的4倍,后表面颗粒污染物引起的损伤斑尺寸约为颗粒污染物尺寸的2倍。并绘出损伤斑尺寸与颗粒尺寸、辐照方式之间的关系。  相似文献   

6.
熔石英表面铜膜污染物诱导损伤实验研究   总被引:3,自引:0,他引:3  
 在熔石英元件表面溅射一层厚度小于10 nm的金属铜膜污染物,并测试元件的透过率。测试355 nm熔石英元件的激光损伤阈值,并用光学显微镜观测损伤形态。实验结果表明:污染后的熔石英元件的损伤阈值降低20%左右,元件表面的金属污染物薄膜经强激光辐照,在熔石英表面形成很多坑状微损伤,分布不均的热应力导致表面起伏,并有明显的烧蚀现象,导致基底损伤阈值下降。建立的光吸收和热沉积传输模型初步解释污染物膜层导致熔石英元件损伤的机理。  相似文献   

7.
用光学显微镜和原子力显微镜记录HF酸刻蚀后熔石英元件后表面划痕的形貌结构,并利用单脉冲激光对其进行辐照测试,以研究不同结构参数划痕的激光损伤特性.实验结果表明,由于HF酸的腐蚀钝化作用,划痕结构横向截面呈余弦形分布;其初始损伤阈值并非由单一的划痕宽度或深度参数决定,而是与其横向剖面结构的宽深比值密切相关;通过实验得到了二者之间的关系曲线,并采用时域有限差分算法对不同结构参数划痕附近光场分布进行理论模拟,理论场计算得到的增强结果与实验值符合得很好.  相似文献   

8.
搭建了紫外激光预处理平台,实验研究了紫外激光对熔石英基片的预处理效果。通过对比不同样片可以看出:熔石英的表面质量对预处理效果影响明显;表面原生缺陷和初始损伤的数量越多,尺度越大,辐照后的预处理效果越明显;预处理时,能量增幅采用零损伤阈值的20%为宜,预处理能量的最高值一般应达到样片零损伤阈值的80%左右。实验发现,损伤后的损伤扩展阈值一般为初始损伤阈值的1/3左右。  相似文献   

9.
激光诱导光学材料后表面损伤的数值模拟   总被引:6,自引:5,他引:1       下载免费PDF全文
 采用3维时域有限差分方法和完全匹配吸收层,模拟了长方体缺陷在熔石英前后表面时对入射激光为TM波的调制作用,绘出了截面上的电场强度分布及最大电场强度随熔石英深度变化的曲线,并进行了比较和分析。结果表明:缺陷在前表面上时,后表面附近的最大电场强度2.522 41 V/m大于缺陷附近的1958 83 V/m;缺陷在后表面上时,材料中的最大电场强度为2.799 38 V/m,且出现在后表面附近。无论该缺陷在前表面还是在后表面,最大电场强度都是出现在后表面附近,表明光学材料的后表面在一定程度上更容易被损伤。  相似文献   

10.
采用3维时域有限差分方法和完全匹配吸收层,模拟了长方体缺陷在熔石英前后表面时对入射激光为TM波的调制作用,绘出了截面上的电场强度分布及最大电场强度随熔石英深度变化的曲线,并进行了比较和分析。结果表明:缺陷在前表面上时,后表面附近的最大电场强度2.522 41 V/m大于缺陷附近的1958 83 V/m;缺陷在后表面上时,材料中的最大电场强度为2.799 38 V/m,且出现在后表面附近。无论该缺陷在前表面还是在后表面,最大电场强度都是出现在后表面附近,表明光学材料的后表面在一定程度上更容易被损伤。  相似文献   

11.
采用HF酸刻蚀和紫外激光预处理相结合的方式提升熔石英元件的负载能力,用质量分数为1%的HF缓冲溶液对熔石英刻蚀1~100 min,综合透过率、粗糙度和损伤阈值测试结果,发现刻蚀时间为10 min的熔石英抗损伤能力最佳。采用355 nm紫外激光对HF酸刻蚀10 min的熔石英进行预处理,结果表明:紫外预处理能量密度在熔石英零损伤阈值的60%以下时,激光损伤阈值单调递增;能量到达80%时,阈值反而低于原始样片的损伤阈值。适当地控制酸蚀时间和紫外激光预处理参数能有效提高熔石英的抗损伤能力。  相似文献   

12.
超声波辅助酸蚀提高熔石英损伤阈值   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高熔石英元件表面抗激光损伤阈值,利用超声波辅助HF酸研究平滑光学元件表面缺陷形貌和去除刻蚀后残留物效果,通过扫描电子显微镜电镜和原子力显微镜记录表面形貌结构,以及单脉冲激光辐照测试抗损伤阈值确定实验参数。研究表明,超声波场的引入能催化HF酸的刻蚀速率、提高钝化效果并且更易剥离嵌入的亚μm级杂质粒子。经过实验测试,获得了熔石英类元件相匹配的超声辅助HF酸刻蚀实验参数,研究结果对应用超声波辅助HF酸研究熔石英表面抗激光损伤有重要意义。  相似文献   

13.
为了提高熔石英元件表面抗激光损伤阈值,利用超声波辅助HF酸研究平滑光学元件表面缺陷形貌和去除刻蚀后残留物效果,通过扫描电子显微镜电镜和原子力显微镜记录表面形貌结构,以及单脉冲激光辐照测试抗损伤阈值确定实验参数。研究表明,超声波场的引入能催化HF酸的刻蚀速率、提高钝化效果并且更易剥离嵌入的亚m级杂质粒子。经过实验测试,获得了熔石英类元件相匹配的超声辅助HF酸刻蚀实验参数,研究结果对应用超声波辅助HF酸研究熔石英表面抗激光损伤有重要意义。;  相似文献   

14.
环境气氛压强对熔石英紫外激光损伤阈值的影响   总被引:2,自引:1,他引:1  
 利用1∶1, S∶1, R∶1方法,测试了不同真空度(10-3~105 Pa)和不同气氛(空气、氮气、氧气)环境下熔石英351 nm激光损伤阈值,测试结果表明,用1∶1, S∶1方法测试得到的阈值在不同气氛压强下几乎相等;R∶1损伤阈值受气压的影响较大,在小于等于103 Pa气压下,较105 Pa气压的阈值降低28%~41%;但R∶1损伤阈值同气氛的关系不大,在同气压下差别小于10%,在测量值误差范围内。利用50%破坏几率对应的损伤阈值Fth(R∶1)一半的激光能量密度辐照样品,考察其抗多脉冲辐照的能力,分析表明,在同样的能量密度辐照下,103 Pa空气及氮气环境和105 Pa氮气环境下同样具有高的寿命;而10-3 Pa高真空环境下其寿命较短,在10-1 Pa低真空环境下其寿命最短。  相似文献   

15.
A 10.6 μm CO2 laser has been reported to effectively mitigate the laser damage growth of fused silica. Two zones of the laser irradiated area are defined in this work: the distorted zone and the laser affected zone. The parameters of the two zones are studied at different CO2 laser beam sizes, irradiation times, and powers by microscopy, profilometry, and photoelastic method. The results show that the diameter of laser affected zone is almost completely determined by the laser beam size and the distorted zone is associated with the mitigation range of CO2 laser beam. The diameter and depth of the distorted zone increase as the laser power and irradiation time increase. The depth grows exponentially depending on the irradiation time. The maximum residual stress discrepancy is located near the boundary of the laser affected zone. The laser damage resistance test results show that the distorted zone and the laser affected zone have a better damage resistance than the original substrate.  相似文献   

16.
采用溶胶-凝胶技术制备了二氧化硅增透膜,通过向溶胶中添加高分子聚乙烯醇缩丁醛(PVB),调控胶体的粒径,进而控制膜层微观结构,研究膜层微观结构与激光损伤阈值的关系。纳米粒度仪和扫描探针显微镜测试表明:PVB加入溶胶后,控制了二氧化硅胶粒的生长,使二氧化硅胶粒生长更均匀,因而膜层的微观结构更均匀。当PVB质量分数为1%时,胶体粒径为15 nm,分散系数小于0.1。用该胶体镀膜,膜层均匀,表面粗糙度小于3.25 nm。并且PVB加入后增加了膜层胶粒间的黏附性,使得膜层强度增大。PVB加入使膜层的激光损伤阈值有所增加。当PVB的添加量为1%时,膜层的激光损失阈值从30.0 J/cm2增加到40.1 J/cm2。膜层激光损伤阈值的增加与膜层微观均匀性和物理强度的增加有关。  相似文献   

17.
采用溶胶-凝胶技术制备了二氧化硅增透膜,通过向溶胶中添加高分子聚乙烯醇缩丁醛(PVB),调控胶体的粒径,进而控制膜层微观结构,研究膜层微观结构与激光损伤阈值的关系。纳米粒度仪和扫描探针显微镜测试表明:PVB加入溶胶后,控制了二氧化硅胶粒的生长,使二氧化硅胶粒生长更均匀,因而膜层的微观结构更均匀。当PVB质量分数为1%时,胶体粒径为15 nm,分散系数小于0.1。用该胶体镀膜,膜层均匀,表面粗糙度小于3.25 nm。并且PVB加入后增加了膜层胶粒间的黏附性,使得膜层强度增大。PVB加入使膜层的激光损伤阈值有所增加。当PVB的添加量为1%时,膜层的激光损失阈值从30.0 J/cm2增加到40.1 J/cm2。膜层激光损伤阈值的增加与膜层微观均匀性和物理强度的增加有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号