首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The spectral properties of a class of tridiagonal matrices are investigated. The reconstruction of matrices of this special class from given spectral data is also studied. Necessary and sufficient conditions for that reconstruction are found. The obtained results extend some results on the direct and inverse spectral problems for periodic Jacobi matrices and for some non-self-adjoint tridiagonal matrices.  相似文献   

3.
Associated with an n×n matrix polynomial of degree , are the eigenvalue problem P(λ)x=0 and the linear system problem P(ω)x=b, where in the latter case x is to be computed for many values of the parameter ω. Both problems can be solved by conversion to an equivalent problem L(λ)z=0 or L(ω)z=c that is linear in the parameter λ or ω. This linearization process has received much attention in recent years for the eigenvalue problem, but it is less well understood for the linear system problem. We develop a framework in which more general versions of both problems can be analyzed, based on one-sided factorizations connecting a general nonlinear matrix function N(λ) to a simpler function M(λ), typically a polynomial of degree 1 or 2. Our analysis relates the solutions of the original and lower degree problems and in the linear system case indicates how to choose the right-hand side c and recover the solution x from z. For the eigenvalue problem this framework includes many special cases studied in the literature, including the vector spaces of pencils L1(P) and L2(P) recently introduced by Mackey, Mackey, Mehl, and Mehrmann and a class of rational problems. We use the framework to investigate the conditioning and stability of the parametrized linear system P(ω)x=b and thereby study the effect of scaling, both of the original polynomial and of the pencil L. Our results identify situations in which scaling can potentially greatly improve the conditioning and stability and our numerical results show that dramatic improvements can be achieved in practice.  相似文献   

4.
A restarted Arnoldi algorithm is given that computes eigenvalues and eigenvectors. It is related to implicitly restarted Arnoldi, but has a simpler restarting approach. Harmonic and regular Rayleigh-Ritz versions are possible.For multiple eigenvalues, an approach is proposed that first computes eigenvalues with the new harmonic restarted Arnoldi algorithm, then uses random restarts to determine multiplicity. This avoids the need for a block method or for relying on roundoff error to produce the multiple copies.  相似文献   

5.
Hyperbolic or more generally definite matrix polynomials are important classes of Hermitian matrix polynomials. They allow for a definite linearization and can therefore be solved by a standard algorithm for Hermitian matrices. They have only real eigenvalues which can be characterized as minmax and maxmin values of Rayleigh functionals, but there is no easy way to test if a given polynomial is hyperbolic or definite or not. Taking advantage of the safeguarded iteration which converges globally and monotonically to extreme eigenvalues we obtain an efficient algorithm that identifies hyperbolic or definite polynomials and enables the transformation to an equivalent definite linear pencil. Numerical examples demonstrate the efficiency of the approach.  相似文献   

6.
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.  相似文献   

7.
We discuss a Krylov-Schur like restarting technique applied within the symplectic Lanczos algorithm for the Hamiltonian eigenvalue problem. This allows us to easily implement a purging and locking strategy in order to improve the convergence properties of the symplectic Lanczos algorithm. The Krylov-Schur-like restarting is based on the SR algorithm. Some ingredients of the latter need to be adapted to the structure of the symplectic Lanczos recursion. We demonstrate the efficiency of the new method for several Hamiltonian eigenproblems.  相似文献   

8.
Inverse iteration is widley used to compute the eigenvectors of a matrix once accurate eigenvalues are known. We discuss various issues involved in any implementation of inverse iteration for real, symmetric matrices. Current implementations resort to reorthogonalization when eigenvalues agree to more than three digits relative to the norm. Such reorthogonalization can have unexpected consequences. Indeed, as we show in this paper, the implementations in EISPACK and LAPACK may fail. We illustrate with both theoretical and empirical failures. This research was supported, while the author was at the University of California, Berkeley, in part by DARPA Contract No. DAAL03-91-C-0047 through a subcontract with the University of Tennessee, DOE Contract No. DOE-W-31-109-Eng-38 through a subcontract with Argonne National Laboratory, by DOE Grant No. DE-FG03-94ER25219, NSF Grant Nos. ASC-9313958 and CDA-9401156, and DOE Contract DE-AC06-76RLO 1830 through the Environmental Molecular Sciences construction project at Pacific Northwest National Laboraotry (PNNL).  相似文献   

9.
This paper is concerned with the problem of the best approximation for a given matrix pencil under a given spectral constraint and a submatrix pencil constraint. Such a problem arises in structural dynamic model updating. By using the Moore–Penrose generalized inverse and the singular value decomposition (SVD) matrices, the solvability condition and the expression for the solution of the problem are presented. A numerical algorithm for solving the problem is developed.  相似文献   

10.
Suppose we are given an n×n matrix, M, and a set of values, (m?n), and we wish to find the smallest perturbation in the 2-norm (i.e., spectral norm), ΔM, such that MM has the given eigenvalues λi. Some interesting results have been obtained for variants of this problem for fixing two distinct eigenvalues, fixing one double eigenvalue, and fixing a triple eigenvalue. This paper provides a geometric motivation for these results and also motivates their generalization. We also present numerical examples (both “successes” and “failures”) of fixing more than two eigenvalues by these generalizations.  相似文献   

11.
We propose a Jacobi–Davidson type method to compute selected eigenpairs of the product eigenvalue problem Am?A1x=λx,Am?A1x=λx, where the matrices may be large and sparse. To avoid difficulties caused by a high condition number of the product matrix, we split up the action of the product matrix and work with several search spaces. We generalize the Jacobi–Davidson correction equation and the harmonic and refined extraction for the product eigenvalue problem. Numerical experiments indicate that the method can be used to compute eigenvalues of product matrices with extremely high condition numbers.  相似文献   

12.
Given a pair of distinct eigenvalues (λ1,λ2) of an n×n quadratic matrix polynomial Q(λ) with nonsingular leading coefficient and their corresponding eigenvectors, we show how to transform Q(λ) into a quadratic of the form having the same eigenvalue s as Q(λ), with Qd(λ) an (n-1)×(n-1) quadratic matrix polynomial and q(λ) a scalar quadratic polynomial with roots λ1 and λ2. This block diagonalization cannot be achieved by a similarity transformation applied directly to Q(λ) unless the eigenvectors corresponding to λ1 and λ2 are parallel. We identify conditions under which we can construct a family of 2n×2n elementary similarity transformations that (a) are rank-two modifications of the identity matrix, (b) act on linearizations of Q(λ), (c) preserve the block structure of a large class of block symmetric linearizations of Q(λ), thereby defining new quadratic matrix polynomials Q1(λ) that have the same eigenvalue s as Q(λ), (d) yield quadratics Q1(λ) with the property that their eigenvectors associated with λ1 and λ2 are parallel and hence can subsequently be deflated by a similarity applied directly to Q1(λ). This is the first attempt at building elementary transformations that preserve the block structure of widely used linearizations and which have a specific action.  相似文献   

13.
For the Hermitian inexact Rayleigh quotient iteration (RQI), we present a new general theory, independent of iterative solvers for shifted inner linear systems. The theory shows that the method converges at least quadratically under a new condition, called the uniform positiveness condition, that may allow the residual norm ξk≥1ξk1 of the inner linear system at outer iteration k+1k+1 and can be considerably weaker than the condition ξk≤ξ<1ξkξ<1 with ξξ a constant not near one commonly used in the literature. We consider the convergence of the inexact RQI with the unpreconditioned and tuned preconditioned MINRES methods for the linear systems. Some attractive properties are derived for the residuals obtained by MINRES. Based on them and the new general theory, we make a refined analysis and establish a number of new convergence results. Let ‖rkrk be the residual norm of approximating eigenpair at outer iteration kk. Then all the available cubic and quadratic convergence results require ξk=O(‖rk‖)ξk=O(rk) and ξk≤ξξkξ with a fixed ξξ not near one, respectively. Fundamentally different from these, we prove that the inexact RQI with MINRES generally converges cubically, quadratically and linearly provided that ξk≤ξξkξ with a constant ξ<1ξ<1 not near one, ξk=1−O(‖rk‖)ξk=1O(rk) and ξk=1−O(‖rk2)ξk=1O(rk2), respectively. The new convergence conditions are much more relaxed than ever before. The theory can be used to design practical stopping criteria to implement the method more effectively. Numerical experiments confirm our results.  相似文献   

14.
Computing the eigenvalues and eigenvectors of a large sparse nonsymmetric matrix arises in many applications and can be a very computationally challenging problem. In this paper we propose the Augmented Block Householder Arnoldi (ABHA) method that combines the advantages of a block routine with an augmented Krylov routine. A public domain MATLAB code ahbeigs has been developed and numerical experiments indicate that the code is competitive with other publicly available codes.  相似文献   

15.
We consider solving eigenvalue problems or model reduction problems for a quadratic matrix polynomial 2 −  − B with large and sparse A and B. We propose new Arnoldi and Lanczos type processes which operate on the same space as A and B live and construct projections of A and B to produce a quadratic matrix polynomial with the coefficient matrices of much smaller size, which is used to approximate the original problem. We shall apply the new processes to solve eigenvalue problems and model reductions of a second order linear input-output system and discuss convergence properties. Our new processes are also extendable to cover a general matrix polynomial of any degree.  相似文献   

16.
A backward error for inverse singular value problems with respect to an approximate solution is defined, and an explicit expression for the backward error is derived by extending the approach described in [J.G. Sun, Backward errors for the inverse eigenvalue problem, Numer. Math. 82 (1999) 339-349]. The expression may be useful for testing the stability of practical algorithms.  相似文献   

17.
In a recent paper, Overton and Van Dooren have considered structured indefinite perturbations to a given Hermitian matrix. We extend their results to skew-Hermitian, Hamiltonian and skew-Hamiltonian matrices. As an application, we give a formula for computation of the smallest perturbation with a special structure, which makes a given Hamiltonian matrix own a purely imaginary eigenvalue.  相似文献   

18.
Based on Rayleigh–Ritz procedure, a new method is proposed for a few eigenpair partial derivatives of large matrices. This method simultaneously computes the approximate eigenpairs and their partial derivatives. The linear systems of equations that are solved for eigenvector partial derivatives are greatly reduced from the original matrix size. And the left eigenvectors are not required. Moreover, errors of the computed eigenpairs and their partial derivatives are investigated. Hausdorff distance and containment gap are used to measure the accuracy of approximate eigenpair partial derivatives. Error bounds on the computed eigenpairs and their partial derivatives are derived. Finally numerical experiments are reported to show the efficiency of the proposed method.  相似文献   

19.
The global Arnoldi method can be used to compute exterior eigenpairs of a large non-Hermitian matrix A, but it does not work well for interior eigenvalue problems. Based on the global Arnoldi process that generates an F-orthonormal basis of a matrix Krylov subspace, we propose a global harmonic Arnoldi method for computing certain harmonic F-Ritz pairs that are used to approximate some interior eigenpairs. We propose computing the F-Rayleigh quotients of the large non-Hermitian matrix with respect to harmonic F-Ritz vectors and taking them as new approximate eigenvalues. They are better and more reliable than the harmonic F-Ritz values. The global harmonic Arnoldi method inherits convergence properties of the harmonic Arnoldi method applied to a larger matrix whose distinct eigenvalues are the same as those of the original given matrix. Some properties of the harmonic F-Ritz vectors are presented. As an application, assuming that A is diagonalizable, we show that the global harmonic Arnoldi method is able to solve multiple eigenvalue problems both in theory and in practice. To be practical, we develop an implicitly restarted global harmonic Arnoldi algorithm with certain harmonic F-shifts suggested. In particular, this algorithm can be adaptively used to solve multiple eigenvalue problems. Numerical experiments show that the algorithm is efficient for the eigenproblem and is reliable for quite ill-conditioned multiple eigenproblems.  相似文献   

20.
The purpose of this paper is to study the perturbation of generalized eigenvalues. Two perturbation bounds of the diagonalizable pairs are given. These results extend the corresponding ones given by Sun (Math Numer Sinica 4:23–29, 1982). This work is supported by the Natural Science Foundation of Guangdong Province (No. 06025061) and by the National Natural Science Foundations of China (No. 10671077 and 10626021).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号