首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
白玉  范玉凡  葛广波  王方军 《色谱》2021,39(10):1077-1085
小分子药物进入人体血液循环系统后与人血清白蛋白(HSA)、α1 -酸性糖蛋白(AGP)等血浆蛋白存在广泛的相互作用,这些相互作用深刻影响药物在体内的分布及其与靶标蛋白的结合,进而影响药物效应的发挥。深入探究药物与血浆蛋白间的相互作用对于候选药物的成药性优化、新药研发、联合用药的风险评控等意义重大。而发展高效、灵敏、准确的分析检测方法是开展药物-血浆蛋白相互作用研究的关键。近年来,色谱技术由于其高通量、高分离性能、高灵敏度等特点在该领域得到了广泛的应用,包括测定血浆蛋白翻译后修饰对药物结合的影响,多种药物的竞争性结合等。其中,高效亲和色谱(HPAC)和毛细管电泳(CE)应用最为广泛,能够通过多种分析方法获取结合常数、结合位点数、解离速率常数等相互作用信息。该文着重综述了HPAC和CE在药物-血浆蛋白相互作用研究中的常用策略及最新研究进展,包括HPAC中常用的前沿色谱法、竞争洗脱法、超快亲和提取法、峰值分析法和峰衰减分析法,以及CE中常用的亲和毛细管电泳法(ACE)和毛细管电泳前沿分析法(CE-FA)等。最后,该文还对当前色谱方法存在的不足进行了总结,并对色谱技术在药物-血浆蛋白相互作用研究领域的应用前景和发展方向进行了展望。  相似文献   

2.
A method of combining capillary electrophoresis (CE) using a surfactant-modified capillary with matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) is described for protein analysis. The CE-MALDI-MS coupling is based on CE fraction collection of nanoliter volume samples in less than 5 microl of dilute acid. This offline coupling does not require any special instrumentation and can be readily performed with commercial instruments. Protein adsorption during CE separation is prevented by coating the capillary with the surfactant didodecyldimethylammonium bromide. This surfactant binds strongly with the capillary wall, hence it does not desorb significantly to interfere with subsequent MALDI-MS analysis. It is shown that the use of a dilute acid for CE fraction collection is advantageous in lowering the detection limit of MALDI-MS compared to using an electrophoretic buffer. The detection limit for proteins such as cytochrome c is 23 fmol injected for CE, or 1.2 fmol spotted for MALDI-MS. This sensitivity is comparable to alternative CE-MALDI-MS coupling techniques using direct CE sample deposition on the MALDI target. In addition, the fraction collection approach has the advantage of allowing multiple reactions to be carried out on the fractioned sample. These reactions are very important in protein identification and structure analysis.  相似文献   

3.
Micellar electrokinetic chromatography (MEKC), a mode of capillary electrophoresis (CE), is considered an efficient analytical technique allowing for the reduction of organic solvent consumption during the experimental procedure. However, during sample preparation of natural products, the usage of large amount of organic solvent is generally unavoidable. In this article, therefore, a fast, simple, efficient, highly automatic and organic solvent-free sample preparation method, namely surfactant-assisted pressurized liquid extraction (PLE), was developed for the extraction of flavonoids in Costus speciosus flowers before MEKC analysis. The various experimental parameters such as the type and concentration of surfactant, and extraction time were evaluated systematically. Under the optimized conditions, the extraction efficiencies of surfactant-assisted PLE methods were comparable with Soxhlet extraction using organic solvent. The combination of surfactant-assisted PLE and MEKC was shown to be a green, rapid and effective approach for extraction and analysis of flavonoids in C. speciosus flowers.  相似文献   

4.
Summary High-performance capillary electrophoresis (HPCE or CE) is an ultrasensitive analytical technique with high resolving power and a wide area of applications including peptide/protein analysis. Its applicability is greatly enhanced by the short separation times, the ease of method development and the minimum sample and organic solvent requirements. Various HPCE modes have been developed for peptide/protein analysis, including capillary zone electrophoresis, micellar elektrokinetic capillary chromatography, capillary isoelectric focusing, isotachophoresis, capillary gel electrophoresis and microemulsion elektrokinetic chromatography. HPCE can easily be applied to quality control of manufacturing processes or to clinical routine for diagnostic purposes due to its potential to provide information on the identity, the purity of the samples and the quantities of the constituents. Furthermore, interactions of a peptide or a protein with other molecules can be studied by HPCE. The separation principles of the various operation modes applied to peptide/protein analysis are presented in this article. Furthermore, in order to exemplify the application of the separation principles in the area of serum protein analysis, which is of importance in clinical practice, the capillary electrophoretic methods developed for analysis of serum and cerebrospinal fluid proteins are also reviewed.Presented at: International Symposium on Separation and Characterization of Natural and Synthetic Macromolecules, Amsterdam, The Netherlands, February 5–7, 2003  相似文献   

5.
Yao L  Liu Q  Li Y  Yao S 《Journal of separation science》2011,34(18):2441-2447
Separation of inorganic anions by capillary electrophoresis (CE) is usually conducted in co-electroosmotic mode due to the large electrophoretic mobilities of inorganic anions. Semipermanent surfactant coatings have been shown to be effective for CE of inorganic anions due to their strong capability of electroosmotic flow (EOF) manipulation. However, semipermanent coatings often suffer from their unsatisfactory stability. In addition, organic solvent additives are usually required to adjust the selectivity, which also aggravate the degradation of coating. In this work, a novel semipermanent coating consisting of cationic Gemini surfactant 18-10-18 and nonionic surfactant Tween 20 was developed to separate inorganic anions in CE. This coating is easy to prepare and more stable than pure Gemini coating. The introduction of nonionic surfactant in the coating not only suppresses the reversed EOF but can also adjust the selectivity of separation. Good separations of six model anions were achieved, the separation efficiency was as high as 65040-169700 plates/m and the RSDs of the migration times were less than 0.5 and 2.5% for run-to-run and day-to-day assays, respectively. Calibration curves were linear in the range of 0.05-5.0 mM; the detection limits ranged from 20 to 50 μM. More importantly, no organic solvents are required in the background buffer to achieve the satisfactory separations. This guarantees the coating stability and makes the method greener than most of other methods for CE of inorganic anions.  相似文献   

6.
《Electrophoresis》2017,38(7):1044-1052
Capillary electrophoresis is an important technique for the characterization of monoclonal antibodies (mAbs), especially in the pharmaceutical context. However, identification is difficult as upscaling and hyphenation of used methods directly to mass spectrometry is often not possible due to separation medium components that are incompatible with MS detection. Here a CE‐MS method for the analysis of mAbs is presented analyzing SDS‐complexed samples. To obtain narrow and intensive peaks of SDS‐treated antibodies, an in‐capillary strategy was developed based on the co‐injection of positively charged surfactants and methanol as organic solvent. For samples containing 0.2% (v/v) of SDS, recovered MS peak intensities up to 97 and 95% were achieved using cetyltrimethylammonium bromide or benzalkonium chloride, respectively. Successful removal of SDS was shown in neutral coated capillaries but also in a capillary with a positively charged coating applying reversed polarity. The usefulness of this in‐capillary strategy was demonstrated also for other proteins and for antibodies dissolved in up to 10% v/v SDS solution, and in other SDS‐containing matrices, including the sieving matrix used in a standard CE‐SDS method and gel‐buffers applied in SDS‐PAGE methods. The developed CE‐MS approaches enable fast and reproducible characterization of SDS‐complexed antibodies.  相似文献   

7.
Matysik FM 《Electrophoresis》2002,23(3):400-407
Over the recent years considerable efforts have been directed to the design of powerful detector arrangements for capillary electrophoresis (CE). The analytical characteristics of the detector have a great influence on the overall analytical performance of CE investigations. The major detection methods in CE, such as UV-Vis absorbance, fluorescence, mass spectrometry and electrochemical detection, have successfully been adapted also to nonaqueous capillary electrophoresis (NACE). However, the different properties of organic solvent systems require some modification of detector concepts and design compared to aqueous CE. The advances of detector development and application in NACE are reported and discussed with emphasis on methodical aspects.  相似文献   

8.
王雨晨  王延梅 《色谱》2020,38(9):1022-1027
毛细管电泳作为一种常见的液相分离技术,因其分析速度快、分离效率高、样品消耗量少等特点,在蛋白质分离分析领域有广泛应用。然而,常用的熔融硅毛细管容易吸附蛋白质,导致电渗流不稳定,分离结果重现性变差;此外,商用毛细管电泳中常用的紫外检测器由于光程短,使得毛细管电泳的检测灵敏度往往不能达到低丰度蛋白质的直接分析要求。因此寻找能够阻止蛋白质吸附、同时能够提高检测灵敏度的涂层是毛细管电泳分离分析蛋白质的重要课题之一。聚(2-甲基-2-噁唑啉)(PMOXA)作为一种类肽类亲水性聚合物,具有与抗蛋白质吸附聚合物聚乙二醇类似的亲水性、抗蛋白质吸附性和生物相容性,而且其类肽结构使之具有较聚乙二醇更好的稳定性,因此近年来在生物质传递、药物载体和阻抗蛋白质吸附等领域得到越来越多的应用。该文主要从两个方面对聚(2-甲基-2-噁唑啉)在毛细管电泳中的应用进行了阐述。一是利用多巴胺作为黏合层将其涂覆在毛细管内壁作为抗蛋白质吸附涂层,这种涂层不仅能成功分离多种蛋白质的混合物(如溶菌酶、细胞色素C、核糖核酸酶A和α-胰凝乳蛋白酶原A),而且在定量检测奶粉中三聚氰胺、乳铁蛋白的过程中,能阻抗其他蛋白质的非特异性吸附,提高了毛细管电泳对奶粉中三聚氰胺、乳铁蛋白的检测效率。二是将其与具有刺激响应性的聚合物(如聚丙烯酸)构成二元混合刷涂层,在一定的pH和离子强度条件下,涂层可吸附目标蛋白质(如牛血清白蛋白、溶菌酶),在另一pH和离子强度条件下可将吸附的目标蛋白质全部释放,同时在释放过程中,处于涂层表面的聚(2-甲基-2-噁唑啉)会进一步阻止蛋白质的吸附,释放的蛋白质在电渗流和电泳的双重作用下快速迁移,到达检测器的蛋白质瞬时浓度大大增加,使目标蛋白质得到富集,目标蛋白质的检测信号得到放大,从而达到了提高低丰度蛋白质检测灵敏度的目的。此外,该文还对聚(2-甲基-2-噁唑啉)在毛细管电泳分离蛋白质中的未来发展趋势进行了展望。  相似文献   

9.
Steiner F  Hassel M 《Electrophoresis》2000,21(18):3994-4016
Nonaqueous capillary electrophoresis (NACE) is the application of a conductive electrolyte dissolved in either one organic solvent or a mixture of several organic solvents to carry out zone electrophoresis or related techniques in fused-silica capillaries. A complete review on the fundamentals, the optimization of analytical methods, practical considerations, and applications is given. To explain the differences to CE in aqueous media, a brief summary on solvent properties and molecular interactions in solutions introduces the reader into these fields. The use of additives to tune separation selectivity by means beyond a pure zone-electrophoretic mechanism is discussed in detail for organic media. Special detection techniques providing high potential for NACE are presented. Data on the precision of NACE methods and a list of relevant applications are included. More specialized applications like the determination of physicochemical constants in NACE or the setup of a semipreparative mode are described.  相似文献   

10.
Supported lipid bilayer (SLB) has been demonstrated as a model of cell membranes with prospective bioanalytical or biotechnological applications. In this study, the formation of SLB and their potential biofunctionality against protein adsorption were investigated by Dual Polarization Interferometry (DPI) and Capillary Electrophoresis (CE). DPI studies on different formulations of double-chained, zwitterionic phospholipidlipids, allow the process of bilayer formation to be followed in situ and in real time. Furthermore the anti-protein adsorption effect provided by the various formulated SLBs was examined by DPI. In addition, the SLB coatings of the same lipid formulations were subsequently employed in CE experiments as a pseudo-stationary phase for demonstrating more efficient separation of alkaline protein standard mixtures. SLB-assisted CE was found to be capable of separating 4 alkaline proteins (protonated at neutral pH). This study demonstrates the applicability of DPI to monitor the process of SLB formation; and our findings, obtained by both DPI and CE, confirm that the presence of the SLB reduced drastically the problematic interactions between cationic, alkaline proteins and the negatively charged silica capillary wall, leading to better recovery and efficient separation of the proteins under investigation.  相似文献   

11.
Single drop microextraction (SDME) is a convenient and powerful preconcentration and sample cleanup method for capillary electrophoresis (CE). In SDME, analytes are typically extracted from a sample donor solution into an acceptor drop hanging at the inlet tip of a capillary. The enriched drop is then introduced to the capillary for CE analysis. Since the volume of the acceptor drop can be as small as a few nanoliters, the consumption of solvents can be minimized and the preconcentration effect is enhanced. In addition, by covering the acceptor phase with an organic layer or by using an organic acceptor phase, inorganic ions such as salts in the sample solution can be blocked from entering the acceptor phase, providing desalting effects. Here, we describe the basic principles and instrumentation for SDME and its coupling with CE. We also review recent developments and applications of SDME-CE.  相似文献   

12.
Biomolecules such as serum proteins can interact with drugs in the body and influence their pharmaceutical effects. Specific and precise methods that analyze these interactions are critical for drug development or monitoring and for diagnostic purposes. Affinity capillary electrophoresis (ACE) is one technique that can be used to examine the binding between drugs and serum proteins, or other agents found in serum or blood. This article will review the basic principles of ACE, along with related affinity-based capillary electrophoresis (CE) methods, and examine recent developments that have occurred in this field as related to the characterization of drug–protein interactions. An overview will be given of the various formats that can be used in ACE and CE for such work, including the relative advantages or weaknesses of each approach. Various applications of ACE and affinity-based CE methods for the analysis of drug interactions with serum proteins and other binding agents will also be presented. Applications of ACE and related techniques that will be discussed include drug interaction studies with serum agents, chiral drug separations employing serum proteins, and the use of CE in hybrid methods to characterize drug binding with serum proteins.  相似文献   

13.
Summary Ion-exclusion chromatography (IEC) and capillary electrophoresis (CE) have been compared for determination of organic acids in samples of Sherry wine vinegar. The accuracy of each technique was evaluated by use of the standard addition method. There were no differences between the techniques at a significance level of 5%, except for determination of malic acid by CE. Both analytical methods were used to analyse sixteen samples of Sherry wine vinegar supplied by different producers. The regression coefficients (r 2) for analysis by IEC and CE exceeded 0.94 for all acids. Results from both methods were in good agreement and the methods are sufficiently selective and sensitive to be applied directly to sherry wine vinegars.  相似文献   

14.
A new method for protein analysis, that is, electroosmotic pump-assisted capillary electrophoresis (EOPACE), is developed and demonstrated to possess several advantages over other CE-based techniques. The column employed in EOPACE consists of two linked sections, poly(vinyl alcohol) (PVA)-coated and uncoated capillaries. The PVA-coated capillary column is the section for protein electrophoresis in EOPACE. Electroosmotic flow (EOF) is almost completely suppressed in this hydrophilic polymer coated section, so protein electrophoresis in the PVA-modified capillary is free of irreversible protein adsorption to the capillary inner wall. The uncoated capillary section serves as an electroosmotic pump, since EOF towards cathode occurs at neutral pH in the naked silica capillary. By the separation of a protein mixture containing cytochrome c (Cyt-c), myoglobin and trypsin inhibitor, we have demonstrated the advantages of EOPACE method over other relevant ones such as pressure assisted CE, capillary zone electrophoresis (CZE) with naked capillary and CZE with PVA-coated capillary. A significant feature of EOPACE is that simultaneous separation of cationic, anionic and uncharged proteins at neutral pH can be readily accomplished by a single run, which is impossible or difficult to realize by the other CE-based methods. The high column efficiency and good reproducibility in protein analysis by EOPACE are verified and discussed. In addition, separation of tryptic digests of Cyt-c with the EOPACE system is demonstrated.  相似文献   

15.
Nonaqueous background electrolytes broaden the application of capillary electrophoresis displaying altered separation selectivity and interactions between analytes and buffer additives compared to aqueous background electrolytes. In addition, nonaqueous capillary electrophoresis (NACE) appears to be ideally suited for online coupling with mass spectrometry due to the high volatility and low surface tension of many organic solvents. Despite these advantages and an increasing use of nonaqueous background electrolytes in CE, coupling of NACE to mass spectrometry has not yet been applied very often to date. The present review summarizes the applications of online NACE-MS with regard to the analysis of drugs, stereoisomers, peptides, alkaloids, polymers and others. A brief discussion of solvent effects in NACE and pH of nonaqueous background electrolyte systems is also presented.  相似文献   

16.
Analysis reproducibility and detection sensitivity of capillary electrophoresis (CE) are often questioned by applied scientists, which has hindered its application as a routine method. To address these issues, a simple, precise, and reproducible dynamic coating method was developed by applying carboxymethyl chitosan (CMC) dynamic coating on fused silica capillary. The proposed coating was accomplished by simply rinsing the capillary with CMC solution for 1 min in between runs, with no regeneration procedure or buffer additives needed. Electroosmotic flow could be well controlled by adjusting the pH of background electrolyte, and the adsorption of analytes onto the capillary inner wall was effectively eliminated. The main parameters of the coating condition were optimized, and extensive applications of these CMC-dynamically coated capillaries in CE separations were then firmly confirmed. By using proteins, aristolochic acids, and inorganic anions as model analytes, the coating showed a good stability, high reproducibility, as well as improved sensitivity. Baseline separations could be obtained with high efficiency. The reduced adsorption was impressively effective for basic proteins, with an average plate number of 90,000/m for each protein, apart from the good resolution on the chromatogram. A high sensitive detection of α-lactalbumin was achieved with a limit of detection (S/N = 3) of 3.5 nM, and the number of theoretical plates was as high as 1,200,000/m. In addition, the combination of the CMC coating with nonaqueous CE and CE-mass spectrometry proved to be practical. All results showed that the CMC-dynamically coated capillary has special properties and obvious superiority over the uncoated ones for CE analysis.  相似文献   

17.
Analysis of black tea theaflavins by non-aqueous capillary electrophoresis.   总被引:3,自引:0,他引:3  
In this study a new capillary electrophoresis (CE) method was developed to quantify the four major theaflavins occurring in black tea. Where aqueous based CE methods showed poor selectivity and considerable band broadening, non-aqueous CE achieved baseline separation of the theaflavins within 10 min. The effects of the organic solvent composition and background electrolyte concentration on the separation selectivity and electrophoretic mobilities were investigated. Our optimized separation solution consisted of acetonitrile-methanol-acetic acid (71:25:4, v/v) and 90 mM ammonium acetate. This method was used to analyze three black tea samples.  相似文献   

18.
The present study reports the investigation of capillary electrophoresis (CE) for the separation of the photosynthetic pigments (chlorophyll derivatives as well as carotenoids) together. Various CE methods, such as micellar electrokinetic chromatography, capillary electrokinetic chromatography, and nonaqueous capillary electrophoresis (NACE) are tested, with coated and uncoated capillary columns to evaluate optimal separation conditions using diode array detection. The effect of different type and composition of organic solvents and surfactants on the separation is discussed. Detection limits are found in the range of 1.14-2.45 ppm. According to the system suitability results, the most effective separation is observed using NACE with Aliquat 336 as cationic surfactant in coated capillary and mixture of MeOH-ACN-THF (5:4:1, v/v/v) as solvent. Quantitative evolution is investigated, and recovery percentage values are found to be 96.7-102%.  相似文献   

19.
Human beta2-glycoprotein I (beta2gpI) is a phospholipid and heparin binding plasma glycoprotein involved in autoimmune diseases characterized by blood clotting disturbances (thrombosis) together with the occurrence of autoantibodies against beta2gpI. With the final goal of assessing autoantibody influence on binding interactions of beta2gpI we have studied the development of capillary electrophoresis (CE)-based assays for interactions of negatively charged ligands with beta2gpI. In the development of suitable conditions for analysis at neutral pH of this basic protein (pI about 8) we found the pH hysteresis behavior of fused silica surfaces useful since the protonated surface after an acid pre-wash counteracted protein adsorption efficiently in contrast to more laborious procedures including acrylamide/dimethylacrylamide coatings that did not permit analysis of this particular protein. This simple approach made estimates of heparin-beta2gpI interactions possible and the principle was shown also to work for detection of betagpI binding to anionic phospholipids. Utilizing the pH hysteresis effect may be a simple solution to the adsorption problems often encountered in analyses of proteins by CE.  相似文献   

20.
Which method should I use for ion analysis, ion chromatography (IC) or capillary electrophoresis (CE)? In terms of actual theoretical plates CE has a clear-cut advantage. The separation ability of IC is adequate for many sample types, and many separation scientists feel that IC offers greater reliability and confidence than CE. However, IC is a more mature technique and there has been more time to solve problems such as peak tailing and to improve reproducibility. The two techniques should be viewed as complementary. A number of recent developments in ion analysis by CE are discussed. These include some simple ways to control electroosmotic flow and improve reproducibility, separation of isotopes, improved methods of indirect photometric detection, a new contactless conductivity detector, separation of ions at low pH, and in solutions of high salt content. Progress in a new technique called IC-CE will be described in which a soluble ion-exchange polymer is added to the capillary electrolyte to separate anions based on differences in both electrophoretic mobility and ion-exchange interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号