首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonthermal secondary electrons with initial kinetic energies below 100 eV are an abundant transient species created in irradiated cells and thermalize within picoseconds through successive multiple energy loss events. Here we show that below 15 eV such low-energy electrons induce single (SSB) and double (DSB) strand breaks in plasmid DNA exclusively via formation and decay of molecular resonances involving DNA components (base, sugar, hydration water, etc.). Furthermore, the strand break quantum yields (per incident electron) due to resonances occur with intensities similar to those that appear between 25 and 100 eV electron energy, where nonresonant mechanisms related to excitation/ionizations/dissociations are shown to dominate the yields, although with some contribution from multiple scattering electron energy loss events. We also present the first measurements of the electron energy dependence of multiple double strand breaks (MDSB) induced in DNA by electrons with energies below 100 eV. Unlike the SSB and DSB yields, which remain relatively constant above 25 eV, the MDSB yields show a strong monotonic increase above 30 eV, however with intensities at least 1 order of magnitude smaller than the combined SSB and DSB yields. The observation of MDSB above 30 eV is attributed to strand break clusters (nano-tracks) involving multiple successive interactions of one single electron at sites that are distant in primary sequence along the DNA double strand, but are in close contact; such regions exist in supercoiled DNA (as well as cellular DNA) where the double helix crosses itself or is in close proximity to another part of the same DNA molecule.  相似文献   

2.
DNA double strand breaks (DSBs) are amongst the most deleterious lesions induced within the cell following exposure to ionizing radiation. Mammalian cells repair these breaks predominantly via the nonhomologous end joining pathway which is active throughout the cell cycle and is error prone. The alternative pathway for repair of DSBs is homologous recombination (HR) which is error free and active during S- and G2/M-phases of the cell cycle. We have utilized near-infrared laser radiation to induce DNA damage in individual mammalian cells through multiphoton excitation processes to investigate the dynamics of single cell DNA damage processing. We have used immunofluorescent imaging of gamma-H2AX (a marker for DSBs) in mammalian cells and investigated the colocalization of this protein with ATM, p53 binding protein 1 and RAD51, an integral protein of the HR DNA repair pathway. We have observed persistent DSBs at later times postlaser irradiation which are indicative of DSBs arising at replication, presumably from UV photoproducts or clustered damage containing single strand breaks. Cell cycle studies have shown that in G1 cells, a significant fraction of multiphoton laser-induced prompt DSBs persists for > 4 h in addition to those induced at replication.  相似文献   

3.
Abstract— UVA irradiation of human lymphocytes induces DNA strand breaks and a portion of these breaks are closed at a slower rate than X-ray induced DNA strand breaks and the strand breaks generated during repair of UVC induced DNA lesions. In addition, the yield of DNA strand breaks in lymphocytes pretreated with UVA radiation and given a subsequent exposure with UVC radiation is higher and shows a slower decrease with increasing repair time in comparison with the expected yield based on additivity between UVA and UVC induced DNA strand breaks. This indicates that UVA delays the closure of the intermediate strand breaks formed in the repair process of UVC induced DNA lesions.  相似文献   

4.
Photoproducts in double-stranded DNA induced by 193 nm radiation have been investigated. Double-stranded, supercoiled pBR322 DNA in buffered aqueous solution was exposed to varying fluences of 193 nm radiation from an ArF excimer laser. The quantum yields for formation of cyclobutylpyrimidine dimers, frank strand breaks and alkali labile sites were calculated from the conversion of supercoiled (Form I) DNA to relaxed (Form II) DNA after treatment with Micrococcus luteus dimer-specific endonuclease, no treatment, or treatment with alkali and heat, respectively. The quantum yields were 1.65 (+/- 0.03) X 10(-3) for pyrimidine dimers, 9.4 (+/- 3.2) X 10(-5) for frank strand breaks and 9.6 (+/- 3.6) X 10(-5) for alkali labile sites. The quantum yields for pyrimidine dimers and strand breaks and alkali labile sites were not affected by 10 nM mannitol. The relative quantum yields for these DNA photoproducts induced by 193 nm radiation differed markedly from those produced by 254 nm radiation.  相似文献   

5.
The alkaline and neutral comet assays have been widely used to assess DNA damage and repair in individual cells after in vivo or in vitro exposure to chemical or physical genotoxins. Cells processed under neutral conditions generate comets primarily from DNA double strand breaks, whereas under alkaline conditions, comets arise from DNA single and double strand breaks and alkali-labile lesions. A modified version of the alkaline comet assay, as described here, used silver stain to visualize the comets and a Gelbond base to facilitate the manipulation and processing of samples. To demonstrate how these modifications improve the assay, fibroblasts derived from both normal and Xeroderma pigmentosum (Xp) individuals were exposed to simulated solar radiation and the resulting DNA damage and repair evaluated and compared with results from the relevant literature. Comets from normal fibroblasts reached their maximum length at about an hour after irradiation. Dose-dependent increases in comet length were observed up to at least 360 mJ/cm2. In contrast, comet lengths from repair deficient Xp fibroblasts were shorter than normal cells reflecting their reduced capacity to generate single strand breaks by the excision of DNA dimers. For incubation times of more than 1 h, comet lengths from normal fibroblasts underwent a time-dependent decrease, supporting the contention that this change was related to the ligation step in the DNA repair process. These changes were compatible with the model of DNA damage and repair established by others for ultraviolet radiation.  相似文献   

6.
We have determined the deleterious effects of singlet oxygen (1O2), generated by thermal decomposition of the water-soluble endoperoxide 3,3'-(1,4-naphthylidene)dipropionate (NDPO2), on plasmid DNA. By following the electrophoretic mobility of DNA on agarose gels, we detected single and double strand breaks induced by treatment with NDPO2. The vector employed was a mammalian shuttle vector and the mutagenic consequences of these damages were investigated, using as mutation target the supF suppressor tRNA gene. A high increase of the mutation frequency, over the background, was observed in plasmids transfected in bacteria or after passage through mammalian cells. Trapping agents and quencher effects and other controls confirm the involvement of 1O2 in DNA damage and mutagenicity. These findings indicate that 1O2 can induce DNA lesions which are repaired by an error-prone process in prokaryotic and eukaryotic cells.  相似文献   

7.
DNA strand breaks and hypoxanthine guanine phosphoribosyl transferase (HPRT) mutants were measured in parallel in photochemically treated (PCT) cells and compared at the same level of cell survival. Chinese hamster fibroblasts (V79 cells) were either incubated with the lipophilic dyes tetra(3—hydroxyphenyl)porphyrin (3THPP) and Photofrin II (PII), the anionic dye meso -tetra(4—sulfonatophenyl)porphine (TPPS4) or the cationic dye meso -tetra( N -methyl-4-pyridyl)porphine ( p -TMPyPH2 before light exposure. In the cells, the lipophilic dyes were localized in membranes, including the nuclear membrane, while the hydrophilic dyes were taken up primarily into spots in the cytoplasm. In addition, the hydrophilic TPPS4 was distributed homogeneously throughout the whole cytoplasm and nucleoplasm. According to the HPRT mutation test, the mutagenicity of light doses survived by 10% of the cells was a factor of six higher in the presence of 3THPP than of PII, whereas for X-rays it was a factor of three higher than for PCT with 3THPP. Light exposure in the presence of the hydrophilic dyes TPPS4 and p -TMPyPH2 was not significantly mutagenic. There was no correlation between the induced rates of HPRT mutants and of DNA strand breaks. Thus, TPPS4 was the most efficient sensitizer with regard to DNA strand breaks when compared at the same level of cell survival, followed by 3THPP, PII and p -TMPyPH2. Hence, the rate of DNA strand breaks cannot be used to predict the mutagenicity of PCT.  相似文献   

8.
DNA strand breaks are early intermediates of the repair of UVC-induced DNA damage, however, since they severely impair cellular activities, their presence should be limited in time. In this study, the effects of incomplete repair of UVC-induced DNA strand breaks are investigated on K562 cell growth and the induction of erythroid differentiation by addition of DMSO to the cell culture medium. The kinetics were followed after UV irradiation by single cell gel electrophoresis, and in total cell population by alkaline or neutral agarose gel electrophoresis. Shortly after exposure, an extensive fragmentation occurred in DNA; DNA double strand breaks were negatively correlated with recovery time for DNA integrity. DNA damage induced by UVC 9J/m2 rapidly triggered necrosis in a large fraction of irradiated K562 cells, and only 40% of treated cells resumed growth at a very low rate within 24h of culture. The addition of DMSO to the culture medium of cells 15min after UVC, when DNA strand break repair was not yet complete, produced apoptosis in >70% of surviving cells, as determined by TUNEL assay. Conversely, if DMSO was added when the resealing of DNA strand breaks was complete, surviving K562 cells retained full growth capacity, and their progeny underwent erythroid differentiation with normal levels of erythroid proteins, delta-aminolevulinic acid dehydrase and hemoglobin. This study shows that the extent of DNA strand break repair influences cell proliferation and the DMSO induced erythroid program, and the same UVC dose can have opposite effects depending on cellular status.  相似文献   

9.
Fluorometric analysis of DNA unwinding (FADU assay) was originally designed to detect X-ray-induced DNA damage in repair-proficient and repair-deficient mammalian cell lines. The method was modified and applied to detect DNA strand breaks in Chinese hamster ovary (CHO) cells exposed to ionizing radiation as well as to UV light. Exposed cells were allowed to repair damaged DNA by incubation for up to 1 h after exposure under standard growth conditions in the presence and in the absence of the DNA synthesis inhibitor aphidicolin. Thereafter, cell lysates were mixed with 0.15 M sodium hydroxide, and DNA unwinding took place at pH 12.1 for 30 min at 20 degrees C. The amount of DNA remaining double-stranded after alkaline reaction was detected by binding to the Hoechst 33258 dye (bisbenzimide) and measuring the fluorescence. After exposure to X-rays DNA strand breaks were observed in all cell lines immediately after exposure with subsequent restitution of high molecular weight DNA during postexposure incubation. In contrast, after UV exposure delayed production of DNA strand break was observed only in cell lines proficient for nucleotide excision repair of DNA photoproducts. Here strand break production was enhanced when the polymerization step was inhibited by adding the repair inhibitor aphidicolin during repair incubation. These results demonstrate that the FADU approach is suitable to distinguish between different DNA lesions (strand breaks versus base alterations) preferentially induced by different environmental radiations (X-rays versus UV) and to distinguish between the different biochemical processes during damage repair (incision versus polymerization and ligation).  相似文献   

10.
Both monolayer and thick (20 microm) films of dry pGEM-3Zf(-) plasmid DNA deposited on tantalum foil were exposed to Al Kalpha X-rays (1.5 keV) for various times in an ultrahigh vacuum chamber. For monolayer DNA, the damage was induced mainly by low energy secondary electrons (SEs) emitted from the tantalum. For the thick films, DNA damage was induced chiefly by X-ray photons. Different forms of plasmid DNA were separated and quantified by agarose gel electrophoresis. The exposure curves for the formation of nicked circular (single strand break, SSB), linear (double strand break, DSB), and interduplex cross-link forms 1 and 2 were obtained for both monolayer and thick films of DNA, respectively. The lower limits of G values for SSB and DSB induced by SEs were derived to be 86 +/- 2 and 8 +/- 2 nmol J(-1), respectively. These values are 1.5 and 1.6 times larger than those obtained with 1.5 keV photons. The projected X-ray energy dependence of the low energy electron (LEE) enhancement factor for the SSB and DSB in monolayer DNA is also discussed. This new method of investigation of the SE-induced damage to large biomolecules allows direct comparison of the yield of products induced by high energy photons and LEEs under identical experimental conditions.  相似文献   

11.
We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60?000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.  相似文献   

12.
Ion-induced DNA damage is an important effect underlying ion beam cancer therapy. This article introduces the methodology of modeling DNA damage induced by a shock wave caused by a projectile ion. Specifically it is demonstrated how single- and double strand breaks in a DNA molecule could be described by the reactive CHARMM (rCHARMM) force field implemented in the program MBN Explorer. The entire workflow of performing the shock wave simulations, including obtaining the crucial simulation parameters, is described in seven steps. Two exemplary analyses are provided for a case study simulation serving to: (a) quantify the shock wave propagation and (b) describe the dynamics of formation of DNA breaks. The article concludes by discussing the computational cost of the simulations and revealing the possible maximal computational time for different simulation set-ups.  相似文献   

13.
The purpose of this study was to determine how free radical formation (fr) correlates with single strand break (ssb) and double strand break (dsb) formation in DNA exposed to the direct effects of ionizing radiation. Chemical yields have been determined of (i) total radicals trapped on DNA at 4 K, G(Sigmafr), (ii) radicals trapped on the DNA sugar, Gsugar(fr), (iii) prompt single strand breaks, Gprompt(ssb), (iv) total single strand breaks, Gtotal(ssb), and (v) double strand breaks, G(dsb). These measurements make it possible, for the first time, to quantitatively test the premise that free radicals are the primary precursors to strand breaks. G(fr) were measured by EPR applied to films of pEC (10,810 bp) and pUC18 (2686 bp) plasmids hydrated to Gamma = 22 mol of water/nucleotide and X-irradiated at 4 K. Using these same samples warmed to room temperature, strand breaks were measured by gel electrophoresis. The respective values for pEC and pUC18 were G(fr) = 0.71 +/- 0.02 and 0.61 +/- 0.01 micromol/J, Gtotal(ssb) = 0.09 +/- 0.01 and 0.14 +/- 0.01 micromol/J, G(dsb) = 0.010 +/- 0.001 and 0.006 +/- 0.001 micromol/J, and Gtota)(ssb)/G(dsb) approximately 9 and approximately 20. Surprisingly, Gsugar(fr) approximately 0.06 mumol/J for pUC18 films, less than half of Gtotal(ssb). This indicates that a significant fraction of strand breaks are derived from precursors other than trapped DNA radicals. To explain this disparity, various mechanisms were considered, including one that entails two one-electron oxidations of a single deoxyribose carbon.  相似文献   

14.
Reactive oxygen species (ROS) are involved in the oxidative damage of the cyanobacterium Anabaena sp. caused by UV-B (280-315 nm) radiation. UV-B-induced overproduction of ROS as well as the oxidative stress was detected in vivo by using the ROS-sensitive probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Thiobarbituric acid reactive substances (TBARS) and fluorometric analysis of DNA unwinding (FADU) methods were adapted to measure lipid peroxidation and DNA strand breaks in Anabaena sp. Moderate UV-B radiation causes an increase of ROS production, enhanced lipid peroxidation and DNA strand breaks, yielding a significantly decreased survival. In contrast, the supplementation of UV-A in our work only showed a significant increase in total ROS levels and DNA strand breaks while no significant effect on lipid peroxidation, chlorophyll bleaching or survival was observed. The presence of ascorbic acid and N-acetyl-L-cysteine (NAC) reversed the oxidative stress and protected the organisms from chlorophyll bleaching and the damage of photosynthetic apparatus induced by UV-B significantly, resulting in a considerably higher survival rate. Ascorbic acid also exhibited a significant protective effect on lipid peroxidation and DNA strand breaks while NAC did not show a substantial effect. These results suggest that ascorbic acid exhibited significantly higher protective efficiency with respect to DNA strand breaks and survival than NAC while NAC appears to be especially effective in defending the photosynthetic apparatus from oxidative damage.  相似文献   

15.
16.
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2‐deoxyribose moieties of DNA in isolated cells and skin. The UVA‐induced generation of 8‐oxo‐7,8‐dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal‐catalyzed Haber–Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single‐strand breaks at the exclusion, however, of direct double‐strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA‐induced DNA damage could include single and more complex lesions arising from one‐electron oxidation of the guanine base together with aldehyde adducts to amino‐substituted nucleobases.  相似文献   

17.
The effect of pretreatment with vitamin E on cytotoxicity, DNA single strand breaks, and chromosomal aberrations as well as on mutation induced by ultraviolet-B light (UV-B) was investigated in Chinese hamster V-79 cells. Cellular pretreatment with non-toxic levels of 25 microM alpha-tocopherol succinate (vitamin E) for 24 h prior to exposure resulted in a 10-fold increase in cellular levels of alpha-tocopherol. Using a colony-forming assay, this pretreatment decreased the cytotoxicity of UV-B light. However, alkaline elution assays demonstrated that pretreatment with vitamin E did not affect the number of DNA single strand breaks caused by UV-B light. In addition, UV-B exposure produced a dose-dependent induction of chromosomal aberrations and mutations at the HGPRT locus, and neither of these actions of UV-B was influenced by pretreatment with the vitamin. These results suggest that vitamin E protects cells from UV-B-induced cytotoxicity, possibly through its ability to scavenge free radicals. The results also suggest that the extent of genotoxicity induced by UV-B light may not correlate directly with the cytotoxic action of this wavelength region in sunlight.  相似文献   

18.
DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7–2.3×10−16 cm2. The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.  相似文献   

19.
Abstract We have used alkaline elution to study DNA damage produced by the photosensitizer hematoporphyrin derivative (HPD) in cultured Chinese hamster cells. Dosimetry was performed by measuring fluence and calculating photon absorption by intracellular HPD. HPD photosensitization causes DNA strand breakage. These breaks are repaired by the cell, although their fractional rate of repair is smaller than that for X-ray induced strand breaks at equivalent levels of strand breakage. The combined DNA polymerase inhibitors cytosine arabinoside and hydroxyurea suppress the repair of HPD-photosensitized breaks more strongly than they suppress repair of X-ray induced breaks. Addition of novobiocin to the aforementioned inhibitors causes almost total suppression of photosensitized break repair. A nucleotide excision repair system with inhibitor susceptibility similar to that of the system which removes pyrimidine dimers thus does not act upon HPD-photosensitized damage. The repair rate and inhibitor sensitivity findings together suggest biologically important differences in the chemical nature of X-ray induced and HPD-photosensitized strand breaks. In addition to strand breaks, HPD photosensitization produces covalent DNA-protein crosslinks, some of which persist through at least 90 min incubation, but which are repaired within 180 min.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号