首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Velocity measurements in flow regions with high turbulent intensities can be performed with high accuracy by means of optical methods. Despite the validity ranges of these methods, great care must be used in taking measurements near solid walls, where high noise levels are present due to the scattering of the light on the wall, and in flows with high vorticity regions like the ones in the wake of a finite wing. In this paper, Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PIV) velocity measurement techniques are used in these two experimental situations and their results compared. This comparison shows that good measurements can be obtained from both techniques and that the resulting data sets do not provide alternative but rather complementary information.  相似文献   

2.
A stereoscopic PIV (Particle Image Velocimetry) technique has been employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was measured using particle images captured simultaneously by two CCD cameras installed in the angular displacement configuration. 400 instantaneous velocity fields were acquired for each of four different blade phases of 0°, 18°, 36° and 54°. They were ensemble averaged to investigate the spatial evolution of propeller wake in the near wake region up to one propeller diameter (D) downstream. The phase-averaged velocity fields show clearly the viscous wake formed by the boundary layers developed along both surfaces of the blade. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the locations of tip and trailing vortices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the viscous dissipation, turbulence diffusion and blade-to-blade interaction. The difference in the mean velocity fields measured by SPIV and 2-D PIV methods was about 5% ≈ 10%. However, the 2-D PIV results also give sufficient information on propeller wake beyond the region of X/D=0.2.  相似文献   

3.
To analyze the complex three-dimensional flow structure of an axial flow fan and determine the validity of its application, PIV is used to provide detailed space and time resolved experimental data for understanding and control of flow field. The high resolution stereoscopic PIV system was successfully employed in this study for the investigation of flow structure around the axial flow fan. Using the once-per-revolution signal from the rotor, image fields were captured at a fixed position of the blades and hence provides the ability to do phase-averaging. The three-dimensional instantaneous velocity fields, phase-averaged velocity fields, instantaneous and mean vorticity distributions of the stereoscopic PIV measurement results were represented at typical planes of the flow field. Phaseaveraged velocity fields were calculated based on 200 frames of the instantaneous stereoscopic PIV measurement results. From the velocity distribution, the vorticity and turbulent intensity distribution, which are known to be major factors of fan noise, were calculated and its diffusion was discussed as they travel downstream. From the reconstructed three-dimensional velocity iso-surface at 8 cross planes of the outlet flow fields, the three-dimensional features can be seen clearly.  相似文献   

4.
The instantaneous and ensemble averaged flow characteristics of a round jet issuing normally into a crossflow was studied using a flow visualization technique and Particle Image Velocimetry measurements. Experiments were performed at a jet-to-crossflow velocity ratio, 3.3 and two Reynolds numbers, 1,050 and 2,100, based on crossflow velocity and jet diameter. Instantaneous laser tomographic images of the vertical center plane of the crossflow jet show that there exists very different natures in the flow structures of the near field jet due to Reynolds number effect even though the velocity ratio is same. It is found that the shear layer becomes much thicker when the Reynolds number is 2,100 because of the strong entrainment of the inviscid fluid by turbulent interaction between the jet and crossflow. The mean and second order statistics are calculated by ensemble averaging over 1,000 realizations of instantaneous velocity fields. The detail characteristics of mean flow field, streamwise and vertical rms velocity fluctuations, and Reynolds shear stress distributions are presented. The new PIV results are compared with those from previous experimental and LES studies.  相似文献   

5.
Fu  Hao  He  Chuangxin  Liu  Yingzheng 《显形杂志》2020,23(2):245-257
Journal of Visualization - This study investigates self-sustained oscillation of the flow in a double-cavity channel with cavity length–width ratio L/H?=?3 using a time-resolved...  相似文献   

6.
Particle Imaging Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) measurements on a self-induced sloshing flow in a rectangular tank had been conducted in the present study. The PIV measurement result was compared with LDV measurement result quantitatively in order to evaluate the accuracy level of the PIV measurement. The comparison results show that the PIV and LDV measurement results agree with each other well in general for both mean velocity and fluctuations of the velocity components. The average disagreement level of the mean velocity between PIV and LDV measurement results was found to be within 3% of the target velocity for the PIV system parameter selection. Bigger disagreements between the PIV and LDV measurement results were found to concentrate at high shear regions. The spatial resolution and temporal resolution differences of the PIV and LDV measurements and the limited frames of the PIV instantaneous results were suggested to be the main reasons for the disagreement.  相似文献   

7.
Shallow depth flow fields and low velocity magnitudes are often challenges for traditional velocity measuring instruments. As such, new techniques have been developed that provide more reliable velocity measurements under these circumstances. In the present study, the two-dimensional (2D) surface velocity field of shallow basins is assessed by means of Large-Scale Particle Image Velocimetry (LSPIV). The measurements are carried out at the water surface, which means that a laser light sheet is not needed. Depending on the time scales of the flow and the camera characteristics, it is even possible to work with a constant light source. An experimental application of this method is presented to analyze the effects of shallow basin geometry on flow characteristics in reservoirs where large coherent two-dimensional flow structures in the mixing layer dominate the flow characteristics. The flow and boundary conditions that give rise to asymmetric flow are presented. Asymmetric flow structures were observed starting from basin shape ratios that are less than or equal to 0.96. By decreasing the basin length and increasing the shape ratio to greater than 0.96, the flow structure generally tends towards a symmetric pattern.  相似文献   

8.
Mixing and transport of passive particles are studied in a simple kinematic model of a meandering jet flow motivated by the problem of lateral mixing and transport in the Gulf Stream. We briefly discuss a model stream function, Hamiltonian advection equations, stationary points, and bifurcations. The phase portrait of the chosen model flow in the moving reference frame consists of a central eastward jet, chains of northern and southern circulations, and peripheral westward currents. Under a periodic perturbation of the meander's amplitude, the topology of the phase space is complicated by the presence of chaotic layers and chains of oscillatory and ballistic islands with sticky boundaries immersed into a stochastic sea. Typical chaotic trajectories of advected particles are shown to demonstrate a complicated behavior with long flights in both the directions of motion intermittent with trapping in the circulation cells being stuck to the boundaries of vortex cores and resonant islands. Transport is asymmetric in the sense that mixing between the circulations and the peripheral currents is, in general, different from mixing between the circulations and the jet. The transport properties are characterized by probability distribution functions (PDFs) of durations and lengths of flights. Both the PDFs exhibit at their tails power-law decay with different values of exponents.  相似文献   

9.

Abstract  

Most vehicles have a heating, ventilation, and air-conditioning device that makes the environment in the passenger compartment comfortable. The improvement of climatic comfort is crucial not only to passenger comfort but also to driving safety. Therefore, a better understanding of the flow characteristics of ventilation inside the passenger compartment is essential. Most of the previous studies investigated the ventilation flow using computational fluid dynamics calculations or scale-down water-model experiments. In this study, the ventilation flow inside the passenger compartment of a real commercial automobile was investigated using a particle image velocimetry velocity measurement technique. Under real operating conditions, the velocity fields were measured at several vertical planes for various ventilation modes. The experimental data obtained from this study can be used to understand the detailed flow characteristics in the passenger compartment of a real car and to validate numerical predictions.  相似文献   

10.
Air movement in workplaces, whether resulting from a forced ventilation system or natural airflow, has a significant impact on occupational health. In a huge building of shipbuilding factory, typical harmful factors such as fume or vaporized gas from welding and cutting of steel plates give an unpleasant feeling. From field data survey, the yearly dominant wind directions around the factory building tested were north-west, north-east and south-east. Among the three wind directions, the ventilation improvement was the worst for the north-eastern wind. This study was focused on modification of opening vents in order to utilize the natural ventilation flow effectively. Instantaneous velocity fields inside the 1/1000 scale-down factory building model were measured using a 2-frame cross-correlation PIV method. The factory model was embedded in an atmospheric boundary layer simulated in a wind tunnel. The modified vents improved the internal ventilation flow with increasing the flow speed more than two times, compared with that of present vents.  相似文献   

11.
The effect of acoustic feed back on global flow response is illustrated through an example of a rectangular screeching jet operating at a nominal Mach number of 1.69. Using a stereoscopic Particle Image Velocimetry, the detailed flow characteristics within a screeching cycle are obtained with fidelity. To resolve the “bias” errors inherent with standard PIV image processing technique, a novel mesh-free and high spatial resolution scheme is implemented to yield accurate velocity measurements in a complex three-dimensional supersonic flow. The axis-switching phenomenon that arises due to unusual mixing enhancement in the minor axis plane of a rectangular jet is vividly displayed. Strong streamwise vortex structure in the jet shear layers, enhanced by the inherent instability of the shear layer, is reported.  相似文献   

12.
13.
正Very recently,obvious advances have been made in fluid mechanics theoretically[1-6].The progress of experiment and related method is also worthy of attention.The detailed physics of a near-wall flow is essential for understanding the  相似文献   

14.
15.
Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor   总被引:1,自引:0,他引:1  
In highly turbulent environments, combustion is strongly influenced by the effects of turbulence chemistry interactions. Simultaneous measurement of the flow field and flame is, therefore, obligatory for a clear understanding of the underlying mechanisms. In the current studies simultaneous PIV and OH-PLIF measurements were conducted in an enclosed gas turbine model combustor for investigating the influence of turbulence on local flame characteristics. The swirling CH4/air flame that was investigated had a thermal power of 10.3 kW with an overall equivalence ratio of ϕ=0.75 and exhibited strong thermoacoustic oscillations at a frequency of approximately 295 Hz. The measurements reveal the formation of reaction zones at regions where hot burned gas from the recirculation zones mixes with the fresh fuel/air mixture at the nozzle exit. However, this does not seem to be a steady phenomenon as there always exist regions where the mixture has failed to ignite, possibly due to the high local strain rates present, resulting in small residence time available for a successful kinetic runaway to take place. The time averaged PIV images showed flow fields typical of enclosed swirl burners, namely a big inner recirculation zone and a small outer recirculation zone. However, the instantaneous images show the existence of small vortical structures close to the shear layers. These small vortical structures are seen playing a vital role in the formation and destruction of reaction zone structures. One does not see a smooth laminar flame front in the instantaneous OH-PLIF images, instead isolated regions of ignition and extinction highlighting the strong interplay between turbulence and chemical reactions. PACS 33.20.-t; 33.50.-j; 47.27.-i; 47.32.Ef; 47.70.Pq; 82.33.Vx; 82.40.-g  相似文献   

16.
17.
A review of laser Doppler anemometry (LDA) and particle image velocimetry (PIV) with their application to the measurement of sound is presented. The fundamental principles behind LDA and PIV are discussed and extended to the application of sound measurement. Special attention is paid to analysis of LDA signals including the Hilbert transform, which enables amplitude information to be obtained about various frequency components of a signal and wavelet analysis, which allows non-stationary signals to be accurately analysed. The influence of the refractive index variations in a medium due to a sound wave on the laser beams of an LDA signal is discussed. Attention is also paid to acoustic streaming which arises due to high-intensity sound, and PIV results are presented to demonstrate the effect.  相似文献   

18.
Computational fluid dynamics is extensively used in the design methodology of medical devices. However, for such applications, the predictive capabilities of CFD codes are highly dependent upon geometry, which most of the time is extremely complex, and flow conditions. The study concerns a ventricular assist device (VAD) where the exit flow, generated through a diffuser, is of particular importance for blood damage predictions. The difficulty to predict the flow lies in the fact that the Reynolds number range includes the transition Reynolds number of the separated diffuser flow as well as the critical Reynolds number of pipe flows. In order to choose the appropriate CFD methodology in terms of flow hypothesis and turbulence model, an experimental setup of the diffuser was built to run PIV velocity measurements and to analyze the flow pattern with the influence of Reynolds number. The flow is described with mean and variance values of the in-plane velocity components and timeresolved results are used to visualize the development of unsteady phenomena introduced in the diffuser separated region. An optimal filter is also used to remove noise in measured velocity vector fields.  相似文献   

19.
Accurate estimation of the forces imposed on offshore structures due to wave and current loading has become more critical due to the introduction of floating production platforms. Work being carried at both Edinburgh and Glasgow Universities aims to measure these effects by force transducer measurements and Particle Image Velocimetry (PIV). A multiple CCD array system is presented which can directly measure accelerations and hence forces acting on offshore structures.  相似文献   

20.
We continue our study of chaotic mixing and transport of passive particles in a simple model of a meandering jet flow [Prants et al., Chaos 16, 033117 (2006)]. In the present paper we study and phenomenologically explain a connection between dynamical, topological, and statistical properties of chaotic mixing and transport in the model flow in terms of dynamical traps, singular zones in the phase space where particles may spend an arbitrarily long but finite time [Zaslavsky, Phys. D 168-169, 292 (2002)]. The transport of passive particles is described in terms of lengths and durations of zonal flights which are events between two successive changes of sign of zonal velocity. Some peculiarities of the respective probability density functions for short flights are proven to be caused by the so-called rotational-island traps connected with the boundaries of resonant islands (including the vortex cores) filled with the particles moving in the same frame and the saddle traps connected with periodic saddle trajectories. Whereas, the statistics of long flights can be explained by the influence of the so-called ballistic-islands traps filled with the particles moving from a frame to frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号