首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, Eu3+-doped nanocrystalline Ca10(PO4)6(OH)2 (Ca10−xEux(PO4)6(OH)2) with different particle sizes have been prepared by the thermal decomposition of precursors. Size-dependent microstructure could be observed in nanocrystalline Ca10−xEux(PO4)6(OH)2. The lattices of Ca10−xEux(PO4)6(OH)2 nanocrystals were more distorted in comparison with the bulk, and the smaller the particle size, the more distorted the lattices. Room temperature photoluminescence showed europium site preference was also size-dependent, with the majority of Eu3+ ions occupying Ca(II) sites in the bulk, but more and more Eu3+ ions occupying Ca(I) sites in Ca10−xEux(PO4)6(OH)2 with decreasing particle size. Fluorescent properties of Ca10−xEux(PO4)6(OH)2 were considered to be influenced by both microstructure and site preference of Eu3+ ions. An abnormal strong intensity of 5D0-7F0 transition was observed in bulk and larger Ca10−xEux(PO4)6(OH)2 nanocrystals, but the relative intensities of 5D0-7F0 transition to 5D0-7F1,2,3,4 transition of Eu3+ became weaker as the particle sizes decreased. As the particle sizes became smaller, the ratios of the red emission transition (5D0-7F2) to the orange emission transition (5D0-7F1) (R/O values) first increased by comparing the bulk sample with 96 nm sample, and then decreased by comparing 96 nm sample to 57 nm sample. The quenching concentrations of Ca10−xEux(PO4)6(OH)2 samples increased with decreasing particle size. Possible mechanisms responsible for these phenomena were proposed. Since nanosized Ca10−xEux(PO4)6(OH)2 showed higher fluorescent intensities, higher R/O values and higher quenching concentrations, this material is considered to be a promising phosphor.  相似文献   

2.
Luminescent Ca1−xF2+x:Eux nanoparticles were synthesized by a chemical co-precipitation method in an ethanol solution. The Ca1−xF2+x:Eux nanoparticles exhibit a sphere-like morphology with particle diameter of about 15-20 nm. With increasing concentration of Eu3+ ion the intensity of XRD diffraction peaks decreased significantly and full width at half-maximum of the peaks increased gradually, which indicated that more Eu3+ ions resulted in the increase of structural defects. The emission spectrum of Ca1−xF2+x:Eux nanoparticles consisted of a few narrow, sharp lines corresponding to Eu3+ ions. The luminescence intensity of Ca1−xF2+x:Eux nanoparticles increased with increasing concentration of Eu3+ ion and reached a maximum at approximately 15 mol%.  相似文献   

3.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

4.
Eu3+ activated Ca1−xEuxZrO3 (x = 0.01–0.05) phosphor with perovskite structure has been synthesized by sol–gel combustion method. The structure, morphology and optical properties of materials were characterized by X-ray diffraction, scanning electron microscopy and fluorescence spectrometry. The XRD results indicate that crystals of CaZrO3:Eu3+ belongs to orthorhombic perovskite structure. The phosphors can be effectively excited by UV light and the emission spectra results indicate that red luminescence of CaZrO3:Eu3+ due to electric dipole transition 5D0 → 7F2 at 616 nm is dominant. Thus, these prepared phosphors show remarkable luminescent properties which find applications in display devices.  相似文献   

5.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

6.
In this study, the red phosphors, Y2W1−xMoxO6:Eu3+ and Y2WO6:Eu3+,Bi3+, have been investigated for light-emitting diode (LED) applications. In Y2WO6:Eu3+, the excitation band edge shifts to longer wavelength with the incorporation of Mo6+ or Bi3+ ions. The emission spectra exhibit 5D07F1 and 5D07F2 transition of Eu3+ ion at 588, 593, and 610 nm, respectively. Moreover, the bluish-green luminescence of the WO66− at about 460 nm is observed to decrease with the incorporation of Mo6+, which results in pure red color. Thus, this study shows that the red phosphor, Y2WO6:Eu3+, incorporated with Mo6+ or Bi3+ ions is advantageous for LEDs applications.  相似文献   

7.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

8.
The co-doping of Li+ and Al3+ ions drastically enhances the luminescence of cubic Eu2O3. The integrated emission intensity of 5D07FJ bands (J=1-4) at 580-710 nm increases by a factor of about 6.7 in the co-doped Eu2O3 compared to the un-doped Eu2O3. In order to confirm that the co-doped ions were actually incorporated into the host lattice, the structural characteristics were studied using Raman spectroscopy, XPS, XRD, photoluminescence lifetime, and an SEM. These analyses consistently indicate a certain structural evolution in their results with an increase in the co-doping concentration. Variations in the crystal structure, the crystal morphology, and the intensity variation of the Raman modes at 465 and 483 cm−1 are presented as the evidences showing the incorporation of the co-doped ions into the host. The luminescence enhancement is discussed in terms of concentration quenching, reduction of defect sites, and the modification of the local symmetry of the Eu3+ ions, especially in the inversion symmetry sites.  相似文献   

9.
The vibrational spectra of Eu[Co(CN)6]·4H2O and luminescence spectra of Eu3+ in this compound, using 355 nm excitation at temperatures down to 10 K, have been assigned. A clear distinction is made between the n=5 and 4 members of the Ln[M(CN)6nH2O series from the vibrational spectra. The electronic spectra show prominent vibronic structures, particularly for the 5D07F2 sideband. A resonance occurs between the transitions 5D07F1(III) and 5D07F0+ν(Eu−N). A crystal field analysis of the derived energy data set is presented for Eu3+ in eight coordination geometry.  相似文献   

10.
Y2−xTbxSiO5 and Y2−xEuxSiO5 nanophosphors with seven different kinds of silicate sources were synthesized by sol-gel method. The structures have been investigated to be composed of nanometer-size grains of 30-60 nm through X-ray diffraction (XRD) and scanning electron microscopy (SEM) was used to compare the different morphology of patterns from seven different silicon sources. The photoluminescence of Y2−xTbxSiO5 was investigated as a function of silicate sources and the results revealed that these nanometer materials showed the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb ions. The characteristic emission 5D0 → 7FJ (J = 1, 2, 4) of Eu ions was also found in the materials of Y2−xEuxSiO5.  相似文献   

11.
Electrical conductivity and Seebeck coefficient for the Bi2−xYxRu2O7 pyrochlores with x=0.0,0.5,1.0,1.5,2.0 were measured in the temperature range of 473-1073 K in air. With increasing Bi content, the temperature dependence of the electrical conductivity changed from semiconducting to metallic. The signs of the Seebeck coefficient were positive in the measured temperature range for all the samples, indicating that the major carriers were holes. The temperature dependence of the Seebeck coefficient for the Y2Ru2O7 indicated the thermal activation-type behavior of the holes, while that for the Bi2−xYxRu2O7 with x=0.0-1.5 indicated the itinerant behavior of the holes. The change in the conduction behavior from semiconductor to metal with increasing Bi content is consistent with the increase in the overlap between the Ru4d t2g and O2p orbitals, but the mixing of Bi6s, 6p states at EF may not be ruled out. The thermoelectric power factors for the Bi2−xYxRu2O7 with x=1.5 and 2.0 were lower than 10−5 W m−1 K−2 and those with x=0.0,0.5,1.0 were around 1-3×10−5 W m−1 K−2.  相似文献   

12.
The structural and optical properties of solution-processed Eu3+:BaY2F8 were characterized and compared to those of the sample synthesized by a solid-state reaction method. Precipitated from solution Eu3+:BaY2F8 has the fluorite (CaF2) type of structure, which transforms completely into monoclinic form when powder is heated at 750 °C. This temperature is also sufficient for entire elimination of hydroxyl groups. The intensities of f-f emission transitions of Eu3+ in BaY2F8 were analyzed in the frame of Judd-Ofelt model and the values of 1.23×10−20 and 1.95×10−20 cm2 were determined for Ω2 and Ω4 intensity parameters. The experimental lifetimes of the 5D0 and 5D1 levels are equal to 8.4 and 2.3 ms, respectively. The quantum efficiency of Eu3+ in BaY2F8 was evaluated to be ∼35%.  相似文献   

13.
Solid electrolytes based on lithium doped CaTiO3,LixCa1−xTiO3 (x=0-0.5) were prepared by the sol-gel method in an ethanol and water mixture medium. Phase identification and morphology observation of the products were carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the LixCa1−xTiO3 powders sintered above 700 °C are of cubic perovskite structure and the mean size of LixCa1−xTiO3 powders is about 80 nm. A study of ionic conductivity by AC impedance implies that the conductivity of LixCa1−xTiO3 increases with the increase of substituted Li+ ions and reaches a maximum value of 4.53×10−4 S cm−1 at x=0.1, and then decreases for x>0.1.  相似文献   

14.
Delafossite-type oxides of CuTbyY1−yO2, CuEuyY1−yO2, CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 have been prepared by solid state reactions. The lattice-parameter dependence on the composition implies substitution of the Tb3+, Eu3+ and Ca2+ cations for the Y3+ site. Noticeable sharp emission lines due to the f-f transitions (5D47FJ, J=3-6) of Tb3+ or due to the f-f transitions (5D07FJ, J=0-4) of Eu3+ are observed at room temperature. Electrical conductivities of CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 are larger than those of CuTbyY1−yO2 and CuEuyY1−yO2, indicating the increase of the hole concentration caused by the substitution of Ca2+ for the Y3+ site. These results indicate the controllability of the luminescence and conductivity in CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 delafossite-type oxides by simultaneous substitution of the rare earth Tb3+ or Eu3+ cation and the Ca2+ cation for the Y3+ site.  相似文献   

15.
This study evaluated potential applications of green to yellow-emitting phosphors (Sr1−xSi2O2N2: Eu2+x) in blue pumped white light emitting diodes. Sr1-xSi2O2N2: Eu2+x was synthesized at different Eu2+ doping concentrations at 1450 °C for 5 h under a reducing nitrogen atmosphere containing 5% H2 using a conventional solid reaction method. The X-ray diffraction patterns of the prepared phosphor (Sr1-xSi2O2N2: Eu2+x) were indexed to the SrSi2O2N2 phase and an unknown intermediate phase. The photoluminescence properties of these phosphors (Sr1−xSi2O2N2: Eu2+x) showed that the samples were excited from the UV to visible region due to the strong crystal field splitting of the Eu2+ ion. The emission spectra under excitation of 450 nm showed a bright color at 545-561 nm. The emission intensity increased gradually with increasing Eu2+ doping concentration ratio from 0.05 to 0.15. However, the emission intensity decreased suddenly when the Eu2+ concentration ratio was >0.2. As the doping concentration of Eu2+ was increased, there was a red shift in the continuous emission peak. These results suggest that Sr1-xSi2O2N2: Eu2+x phosphor can be used in blue-pumped white light emitting diodes.  相似文献   

16.
The title compounds (Sr0.96−xBa0.04)Al12−yMgyO19:Tbx (0<x<0.4; 0<y<0.18) are single-phase magnetoplumbite determined by X-ray powder diffraction analysis. The characteristic emission lines of 5D37Fj (j=2, 3, 4, 5) and 5D47Fj (j=4, 5, 6) of Tb3+ are recorded under the VUV excitation. The intensive luminescence mainly comes from 5D37Fj transition when the concentration of Tb3+ is low. However, when the concentration of Tb3+ starts to increase from very low concentration, 5D47Fj transition is becoming dominant. Three broad excitation bands at 165, 193 and 233 nm have been observed. The band at 165 nm originates from the overlap between the host absorption and the charge transfer of Tb3+-O2−. The other two broad bands are the first spin-allowed and the spin-forbidden of 4f-5d transition, respectively. The experimental observation of the 4f-5d transition of Tb3+ is consistent well with the theoretical expectations.  相似文献   

17.
The Y2O3:Eu3+,Mg2+,TiIV materials (xEu: 0.02, xMg: 0.08, xTi: 0.04) were prepared by solid state reaction. The purity and crystal structure of the material was studied with the X-ray powder diffraction. Luminescence properties were studied in the UV-VUV range with the aid of synchrotron radiation. The emission of Y2O3:Eu3+,Mg2+,TiIV had a maximum at 612 nm (λexc: 250 nm) due to the 5D07F2 transition of Eu3+. The excitation spectra (λem: 612 nm) showed a broad band at 233 nm, due to the charge transfer transition between O2− and Eu3+, and at 297 nm due to the Ti→Eu3+ energy transfer. Only very weak persistent luminescence was discovered. In the room and 10 K temperature excitation spectra, the line at 208 nm is due to the formation of a free exciton (FE) and a broad band at 199 nm was related to the valence-to-conduction band absorption of the Y2O3 host lattice. The absorption edge was ca. 205 nm giving 6.1 eV as the energy gap of Y2O3.  相似文献   

18.
EuxLa1 - xTa7O19 geptatantalates have been synthesized (x = 0.005-10). The luminescence and excitation spectra of these geptatantalates have been investigated at 77 and 300 K. It is supposed that the Eu3+ luminescence spectrum for all x may be interpreted within one type optical center with D2d symmetry. The energy level diagram of the luminescence center has been worked out. It has been found that there is concentration dependence quenching of an europium luminescence. The reasons for this are discussed.  相似文献   

19.
Eu2+-doped BaSi6N8O phosphors (Ba1−xEuxSi6N8O, 0.005≤x≤0.2) were synthesized by gas-pressure sintering of the powder mixture of BaCO3, Si3N4, and Eu2O3 at 1750 °C under 0.5 MPa N2. The fired powder consists of a major BaSi6N8O phase and a trace amount of impurity phases. The structural result of the BaSi6N8O powder, refined by the Rietveld method, agrees well with that of single crystals. A wide blue luminescence band peaking at about 500 nm is observed in BaSi6N8O:Eu2+, upon excitation with the ultraviolet light of 310 nm. Although Eu is covalently bonded to six nearest neighbor nitrogen atoms, the luminescence of Eu2+ is not significantly redshifted but shows a very narrow excitation spectrum at high energies. The origin of the short-wavelength luminescence is mainly ascribed to a small crystal-field splitting as a result of extremely long distances between europium and nitrogen ligands in BaSi6N8O:Eu2+.  相似文献   

20.
Sr2SiO4:Eu3+ and Sr2SiO4:Eu3+ doped with R+(R+=Li+, Na+ and K+) phosphors were prepared by conventional solid-state reaction and investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy. XRD patterns and SEM reveal that the optimal firing condition for Sr2SiO4:Eu3+ was 1300 °C for 4 h. The excitation and emission spectra indicate that the phosphor can be effectively excited by ultraviolet (395 nm) and blue (466 nm) light and emits intense red light peaked at around 614 nm corresponding to the 5D07F2 transitions of Eu3+. In the research work, the effect of R+ contents on luminescence property and the Eu3+ concentration quenching process have also been investigated. The Eu3+ concentration quenching mechanism was verified to be a multipole-multipole interaction and the critical energy-transfer distance was calculated to be around 14.6 Å. The dopant R+(R+=Li+, Na+ and K+) as charge compensator in Sr2SiO4:Eu3+ can further enhance luminescence intensity, and the emission intensity of Sr2SiO4:Eu3+ doping Li+ is higher than that of Na+ or K+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号