首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
谢尊  安忠  李有成 《物理学报》1999,48(10):1938-1943
将聚噻吩的一维SSH孤子模型推广到二维平面,研究了聚噻吩双电子极化子附近的二维局域振动模.计算结果表明双电子极化子附近存在15个局域振动模,其中4个奇宇称模与4条强红外吸收谱线1020,1120,1200,1323cm-1相对应,4个偶宇称模恰与4条Raman吸收峰700,1047,1175,1220cm-1一致. 关键词:  相似文献   

2.
李占杰  安忠  姚凯伦 《中国物理》1994,3(11):836-842
The localized vibrational modes around a bipolaron in cis-(CH)x are studied by using a two-dimensional extension of the SSH model that includes the bond-bending term. A number of additional modes have been found, compared with the results based on the standard SSH model The amplitudes of the two directions (x and y direction) are comparable for most of the modes as in the trans-(CH)x case. The number of localized modes and their frequencies depend not only on the coupling constant, but also on the bond-bending term and the parameter t1 in removing the degeneracy of the ground state.  相似文献   

3.
Starting from the extended SSH model that includes an external Coulomb potential arising from interchain charged solitons and counterions, the intrachain e-e interaction and the next neighbor hopping interactions, eight localized vibrational modes around the soliton lattice have been found for the doping levels from 3.33 at.% to 13.33 at.%. Among them three are infrared active and they can be used to interpret the three observed infrared absorption lines at 487, 1284 and 1362 cm–1. Furthermore, the frequencies of localized modes are decreased and their localizations are weakened when the dopant concentrations increase.  相似文献   

4.
In this work we simulate the photoluminescence (PL) spectra of BDMO-PPV thin films prepared by spin-coating technique on glass and on copper, as a function of temperature (12-300 K). Simulations were done using two theoretical models based on (i) the SSH theory where the line shape of the purely electronic transition is partly generated by localized states and partly by delocalized states and (ii) the semi-empirical model containing the coupling between localized molecular excitons and vibrational modes in Franck-Condon approach. Four active vibrational modes have been considered: C-C stretching coupled to a C-H bending of the phenyl ring at 1111.5 cm−1, inter-rings C-C stretching at 1282.2 cm−1, CC stretching coupled to a C-H bending of the vinyl group at 1309.3 cm−1, C-C stretching of the phenyl ring at 1580.2 cm−1. Additional vibrational mode of 403 cm−1 associated with C-C-C out-of-plane bending allowed leastwise for this material to adjust well with the characteristic asymmetry of the purely electronic transition. Finally, application of theoretical models are strongly dependent on the well-resolved PL spectra, i.e., electronic transition peak presented a relatively thinner HWHM and an asymmetric line shape.  相似文献   

5.
The heating of Co(2+) ferricyanide above 80 °C induces an inner charge transfer from Co(2+) towards Fe(III) to form the mixed valence system Co(2+)Co(III) ferri- ferro-cyanide. This charge transfer takes place preserving the material framework and forming a solid solution of the initial and final species. The cell edge of the cubic cell (Fm-3m) of this solid solution follows a regular variation with the material composition. This mixed valence system was characterized using X-ray diffraction, infrared, thermo-gravimetric, Mössbauer and magnetic measurements. Its formation is easily detected by the appearance of an intermediate ν(CN) absorption band in the infrared spectra at around 2120 cm−1, 40 cm−1 below and above the observed frequency for this vibration in Co(2+) ferri- and ferro-cyanide, respectively.  相似文献   

6.
《Solid State Communications》2003,127(11):703-706
In this work we present temperature dependent infrared reflectivity and absorption of Sr2FeWO6 between 700 and 17 K measured from 40 to 10000 cm−1. The reflectivity spectra show well defined phonon bands peaking at 143, 227, 377 and 625 cm−1 assigned to overlapping vibrational modes split from those active in cubic perovskite. We have also verified that this compound is structurally stable in the whole temperature range and that its optical gap at ∼750 cm−1 (95 meV) undergoes only a minor high temperature decrease ascribed to new thermally accessible levels.  相似文献   

7.
Polarized infrared reflectivity measurements between 300 and 10 K have been carried out on charge density waves (CDW) conductor blue bronze Tl0.3MoO3. Three important features are observed: (i) A bump at 1155 cm−1 in the reflectivity spectra of Tl0.3MoO3 at 300 K is a precursor of the Peierls gap due to optical excitations across a pseudogap, and this kind of Peierls-like gap opens gradually with decreasing temperature from 180 to 160 K. (ii) The three sharp modes as “triplet” of infrared reflectivity between 800 and 1000 cm−1 of Tl0.3MoO3 along [1 0 2] axis show red shift compared to K0.3MoO3 and Rb0.3MoO3, which is assigned to the increase of the distance of Mo-O bond with the substitution of thallium ions. (iii) Two peaks at about 514 and 644 cm−1 in the far-infrared reflectivity spectra of Tl0.3MoO3 along [1 0 2] direction are suggested to be the electronic transitions from the valence band to the midgap state and from occupied midgap state to the conduction band, respectively.  相似文献   

8.
We observed four kinds of adsorbed NO molecules on Pt(9 9 7) at 11 K using infrared reflection absorption spectroscopy (IRAS). The peaks at 1690, 1484 and 1615 cm−1 are assigned to the N-O stretching modes of the on-top site and the hollow site on the terrace and the bridge site at the step, respectively. The 1385 cm−1 peak is observed below ∼70 K. We assign the 1385 cm−1 peak to the hollow site of the (1 1 1) microfacet at the step or the lower-terrace hollow site nearest to the step. By heating, site-to-site hopping to the more stable site occurs and the relative stability of four adsorption sites can be determined.  相似文献   

9.
The temperature dependence of the Raman modes in anatase TiO2 nanocrystals has been investigated over the temperature range 77-873 K. With increasing temperature, the frequency of the Eg mode at 639 cm−1 shifts sublinearly to the lower frequencies, however, the frequency of the lowest-frequency Eg mode shifts sublinearly to the higher frequencies from 138 cm−1 at 77 K to 152 cm−1 at 873 K and the frequency of the B1g mode at 397 cm−1 increases firstly and attains a maximum near 350 K. The linewidth of all of the three modes increases linearly with increasing temperature. The anharmonic effects contribute a lot to the temperature dependence behavior of the frequency and linewidth of Raman modes in anatase TiO2 nanocrystals.  相似文献   

10.
The results of a comprehensive investigation of the rotational spectrum of lactic acid over the frequency region 171-318 GHz are reported. Some supersonic expansion measurements at 8-16 GHz have also been made. A complete set of octic level constants in the asymmetric rotor Hamiltonian has been determined for the ground vibrational state from a fit to over 1000 measured transition frequencies. Spectroscopic constants have also been determined for the first five excited states of the low frequency, 60 cm−1, torsional vibrational mode, and for four other vibrationally excited states. Vibrational states become rather crowded above 200 cm−1, with seven different states only in the next 100 cm−1, and almost all of the measured states in this energy region show evidence of perturbations. The analysis was carried out with the newly developed AABS software package for Assignment and Analysis of Broadband Spectra.  相似文献   

11.
Transient optical Kerr effect of liquids C2H4Cl2 and C2H4Br2 is investigated, for the first time to our knowledge, with a femtosecond (fs) probe laser delayed with respect to a coherent fs pump laser. Coherent coupling and electronic Kerr signals are observed around zero delay when pump and probe overlap. Persisting after the pump-probe overlap are Kerr signals arising from the torsional and other intramolecular vibrations of the trans and gauche conformations; Kerr signals arising from the intermolecular motion are also observed. Vibrational quantum interference is only observed in liquid C2H4Br2 and the related beats data are fitted with the torsional vibrations, 91 cm−1 (gauche) and 132 cm−1 (trans), and the CCBr angle-bending vibrations, 231 cm−1 (gauche) and 190 cm−1 (trans), with dephasing times, 0.45 ps, 0.45 ps, 2 ps, and 1.5 ps, respectively. These vibrational frequencies agree with those obtained in the frequency-domain. That no vibrational mode is observed for C2H4Cl2 might be attributed to ineffective Raman-pumping. Kerr signals observed after the pump-probe overlap are Fourier transformed to give the spectra of the intermolecular motion and the vibrational spectrum, which agrees with the one observed in the infrared absorption and/or Raman scattering heretofore.  相似文献   

12.
Using infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM), we investigated the adsorption states of NO on the Pt(9 9 7) step surface. At 90 K, we observe three N-O stretching modes at 1490 cm−1, 1631 cm−1 and 1700 cm−1 at 0.2 ML. The 1490 cm−1 and 1700 cm−1 peaks are assigned to NO molecules at fcc-hollow and on-top sites of the terrace, respectively. The 1631 cm−1 peak is assigned to the step NO species. In the present STM results, we observed that NO molecules were adsorbed at the bridge sites of the step as well as fcc-hollow and on-top sites of the terrace. To help with our assignments, density functional theory calculations were also performed. The calculated results indicate that a bridge site of the step is the most stable adsorption site for NO, and its stretching frequency is 1607 cm−1. The interactions between NO species at different sites on Pt(9 9 7) are also discussed.  相似文献   

13.
The hydrogen defect in ZnO that gives rise to a local vibrational mode at 3326 cm−1 is investigated by means of IR absorption. Sub-band gap illumination results in the appearance of a new line at 3358 cm−1 at the expense of the 3326 cm−1 signal. The measurements identify both IR absorption signals as O–H stretch modes of the same defect in different charge states. The effect of the sub-band gap light strongly suggest that this defect has a deep level in the band gap. Additionally, results on the thermal stability of the 3326 cm−1 feature are presented.  相似文献   

14.
Ordinary Portland cement (OPC) paste with water to cement ratio 0.5 has been studied by FTIR spectroscopy and TEM/SAED techniques. The progressive shift in frequencies and change in intensity of characteristic peaks in the FTIR spectra of cement powder indicate polymerization of silicates due to hydration reaction. The appearance of new peaks around 975-985 and 3640-3650 cm−1 in FTIR spectra of cement paste has been attributed to the formation of two principal hydration products (C-S-H) and Ca(OH)2, respectively. There is a strong resemblance of peak shape at 980 cm−1 of cement paste with that of synthesized 1.1 nm Tobermorite. TEM/SAED techniques reveal the presence of three distinct types of C-S-H nanostructures viz. spherical particles, fibres and bundle of fibres, and nano tubes in cement paste. Theoretical study of two C-S-H clusters by MNDO and Density Functional Techniques shows excellent agreement between computed structural data and reported experimental results of Tobermorite and Jennite. The computed interplanar Ca-Ca distance (11.162 Å) of C-S-H cluster (Ca/Si=1.125) indicates greater structural similarity of this cluster to 11 Å Tobermorite. There is a strong similarity of IR profile of C-S-H cluster (Ca/Si=1.125) with 1.1 nm Tobermorite. Above study indicates that this cluster is probably the most likely basic unit of C-S-H phases formed during the early stage of OPC cement hydration.  相似文献   

15.
Using infrared reflection absorption spectroscopy (IRRAS) and temperature programmed desorption (TPD), we investigated carbon monoxide (CO) adsorption and desorption behaviors on atomic checkerboard structures of Cu and Pd formed by Pd vacuum deposition at various temperatures of Cu(1 0 0). The 0.15-nm-thick Pd deposition onto a clean Cu(1 0 0) surface at room temperature (RT) showed a clear c(2 × 2) low-energy electron diffraction (LEED) pattern, i.e. Cu(1 0 0)-c(2 × 2)-Pd. The RT-CO exposure to the c(2 × 2) surfaces resulted in IRRAS absorption caused by CO adsorbed on the on-top sites of Pd. The LEED patterns of the Pd-deposited Cu(1 0 0) at higher substrate temperatures revealed less-contrasted c(2 × 2) patterns. The IRRAS intensities of the linearly bonded CO bands on 373-K-, 473-K-, and 673-K-deposited c(2 × 2) surfaces are, respectively, 25%, 22%, and 10% less intense than those on the RT-deposited surface, indicating that Pd coverages at the outermost c(2 × 2) surfaces decrease with increasing deposition temperature. In the initial stage of the 90-K-CO exposure to the RT surface, the band attributable to CO bonded to the Pd emerged at 2067 cm−1 and shifted to higher frequencies with increasing CO exposure. At saturation coverage, the band was located at 2093 cm−1. In contrast, two distinct bands around 2090 cm−1 were apparent on the spectrum of the 473-K-deposited surface: the CO saturation spectrum was dominated by an apparent single absorption at 2090 cm−1 for the 673-K-deposited surface. The TPD spectra of the surfaces showed peaks at around 200 and 300 K, which were ascribable respectively to Cu-CO and Pd-CO. Taking into account the TPD and IRRAS results, we discuss the adsorption-desorption behaviors of CO on the ordered checkerboard structures.  相似文献   

16.
The analysis of the rotational spectrum of HNO3 has been extended to include the υ8 = υ9 = 1 state at 1205.7 cm−1 and the υ6 = υ7 = 1 state at 1223.4 cm−1. Based on 78-519 GHz data, the assignments in the 8191 vibrational state have been significantly expanded from the previously reported microwave measurements [T.M. Goyette, F.C. De Lucia, J. Mol. Spectrosc. 139 (1990) 241-243]. A new microwave analysis is also reported for the 6171 vibrational state. A simultaneous analysis takes into account the localized ΔKa = ±2 Fermi resonances between the vibrational states, describes the torsional splitting of 3.3 and 1.4 MHz for the 8191 and 6171 states respectively, and fits to experimental accuracy over 1500 rotational transition frequencies that extend up to J = 59. Infrared energy levels [A. Perrin, J.-M. Flaud, F. Keller, A. Goldman, R. D. Blatherwick, F. J. Murcray, C. P. Rinsland, J. Mol. Spectrosc. 194 (1999) 113-123] were also included in the analysis and fit to experimental accuracy. Measurement of strongly perturbed transitions in each vibrational state provide a determination of the band origin difference of 17.733184(17) cm−1. The rotational constants agree well with those predicted by vibrational-rotational constants of the fundamental modes. Furthermore, the analysis will provide a very accurate simulation of the infrared spectrum of HNO3 in the 8.3 μm region.  相似文献   

17.
Rotationally resolved pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the 00, 61 and 41 vibrational levels of the ground electronic state of the formaldehyde cation were recorded using a resonant three-color three-photon excitation scheme. The first adiabatic ionization energy of CH2O (87793.33(1.30) cm−1) and the rigid-rotor rotational constants (A+ = 8.874(8) cm−1, B+ = 1.342(15) cm−1, C+ = 1.148(18) cm−1) of the vibronic ground state of CH2O+ were derived. A strong a-type Coriolis interaction between the 61 and 41 vibrational levels was observed. The Coriolis coupling parameter and the deperturbed fundamental vibrational frequencies of the in-plane-rocking mode ν6 and the out-of-plane bending mode ν4 were determined to be 8.70(10) cm−1, 823.67(30) cm−1 and 1036.50(30) cm−1, respectively. The intensity distribution of the photoelectron spectra was analyzed in the realm of a simple photoionization model.  相似文献   

18.
Diamond-like carbon films containing Ag and Cu in nanocrystalline form were deposited onto SnO2-coated glass substrates by electrochemical technique. Relative amount of silver and copper to be incorporated in the DLC matrix was tailored by varying the amount of silver and copper containing salts in the electrolyte. Current density was adjusted to obtain films with different crystallite size while the volume fraction of the metal nanocrystallites was altered by varying the dilution of the solution containing the salts. Raman studies indicated the presence of two peaks located at ∼1350 cm−1 (D-line) and 1566 cm−1 (G-line) for all the films and the relative intensities of these peaks changed with the amount of metal incorporation in it. The FTIR spectra were seen to be dominated by a peak at 975 cm−1 for C-H out of plane deformation modes along with peaks for C-H bending, C-H stretching and C-C stretching modes at 858, 1113 and 1189 cm−1, respectively. The optical absorption spectra showed a single plasmon band instead of two characteristic bands for Ag and Cu. We ascribe this to nanophase limited interfacial alloying at the Ag-Cu interface. The experimental observation was analyzed in the light of Mie theory.  相似文献   

19.
Sintered ceramic powders of calcium-doped lead titanate [Pb1−xCaxTiO3] ceramics with different Ca dopant concentration in the range (x=0-0.35) have been prepared using a sol-gel chemical route. The sol-gel technique is known to offer better purity and homogeneity, and can yield stoichiometric powders with improved properties at relatively lower processing temperature in comparison to conventional solid-state reaction. X-ray diffraction (XRD) and Raman spectroscopy studies have been carried out to identify the crystallographic structure and phase formation. The infrared absorption spectra in the mid-IR region (400-4000 cm−1) show the band corresponding to the Ti-O bond at ∼576 cm−1 and is found to shift to a higher wave number 592 cm−1 with increasing Ca content. The dielectric properties as a function of frequency, and phase transition studies on sintered ceramic Pb0.65Ca0.35TiO3 has been investigated in detail over a wide temperature range 30-600 °C and the results are discussed.  相似文献   

20.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号