首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High resolution maximum entropy method (MEM) electron density maps have been elucidated for LiF and NaF using reported X-ray structure factors. The ionic nature of the bonding between constituent atoms in both the systems is found to be well pronounced and clearly seen from the electron density maps. The resolution of the present MEM maps is 0.063 Å per pixel for LiF and 0.072 Å per pixel for NaF along the three crystallographic axes. The electron density at the middle of the bond along [111] is found to be 0.0673 e/Å3 for LiF and 0.003 e/Å3 for NaF showing the different ionic strengths of the bonding. The electron density along [100] and [110] has also been drawn and analyzed. The inequality in the ionicity for the individual atoms and the electron content for different ionic radii have also been analyzed and compared with already published results. The wRMEM obtained from MEM analysis is 0.3% for LiF and 0.79% for NaF.  相似文献   

2.
The electron spectrum of δ-doped quantum wells in n-GaAs is investigated by means of the Thomas-Fermi (TF) method at finite temperatures. This method shows rapid convergence and good accuracy. Under two-dimensional (2D) doping concentrations 1013…2×1013 cm−2, the simplest TF method (T=0 K) can be used to calculate the profiles of the potential well up to T≈200 K. The simplest TF method yields correct results for the electron concentrations and the differences of the electron energy sublevels in the quantum well up to room temperature (T∼300 K).  相似文献   

3.
The surface bonding arrangement in nearly all the confirmed reconstructions of InAs(0 0 1) and GaAs(0 0 1) have only two types of hybridization present. Either the bonds are similar to those in the bulk and the surface atoms are sp3 hybridized or the surface atoms are in a tricoordinated bonding arrangement and are sp2 hybridized. However, dicoordinated In atoms with sp hybridization are observed on the InAs(0 0 1), In-rich, room temperature and low temperature surfaces. Scanning tunneling microscopy (STM) images of the room temperature (300 K) InAs(0 0 1) surface reveal that the In-rich surface reconstruction consists of single-atom rows with areas of high electron density that are separated by ∼4.3 Å. The separation in electron density is consistent with rows of undimerized, sp hybridized, In atoms, denoted as the β3′(4 × 2) reconstruction. As the sample is cooled to 77 K, the reconstruction spontaneously changes. STM images of the low temperature surface reveal that the areas of high electron density are no longer separated by ∼4.3 Å but instead by ∼17 Å. In addition, the LEED pattern changes from a (4 × 2) pattern to a (4 × 4) pattern at 77 K. The 77 K reconstruction is consistent with two (4 × 2) subunit cells; one that contains In dimers on the row and another subunit cell that contains undimerized, sp hybridized, In atoms on the row. This combination of dimerized and undimerized subunit cells results in a new unit cell with (4 × 4) periodicity, denoted as the β3(4 × 4) reconstruction. Density functional theory (DFT) and STM simulations were used to confirm the experimental findings.  相似文献   

4.
Epitaxial growth characteristics of α-MnS on GaAs(1 0 0) substrates have been investigated by X-ray diffraction and double crystal rocking curve measurements. Growth of stoichiometric α-MnS films has been performed by hot-wall epitaxy using Mn and ZnS as a source of sulfur. The films on GaAs(1 0 0) at low substrate temperature exhibit multiphase crystal structures of zincblende and rocksalt, and the main structure is changed to rocksalt with increasing substrate temperature. Photoluminescence spectrum of the α-MnS epilayer at 5 K exhibits broad emission bands, which are attributed to Mn2+ ions. The band gap energy of the α-MnS epilayer at room temperature was also estimated to be about 3.3 eV by reflection.  相似文献   

5.
For the advance of GaN based optoelectronic devices, one of the major barriers has been the high defect density in GaN thin films, due to lattice parameter and thermal expansion incompatibility with conventional substrates. Of late, efforts are focused in fine tuning epitaxial growth and in search for a low temperature method of forming low defect GaN with zincblende structure, by a method compatible to the molecular beam epitaxy process. In principle, to grow zincblende GaN the substrate should have four-fold symmetry and thus zincblende GaN has been prepared on several substrates including Si, 3C-SiC, GaP, MgO, and on GaAs(0 0 1). The iso-structure and a common shared element make the epitaxial growth of GaN on GaAs(0 0 1) feasible and useful. In this study ion-induced conversion of GaAs(0 0 1) surface into GaN at room temperature is optimized. At the outset a Ga-rich surface is formed by Ar+ ion bombardment. Nitrogen ion bombardment of the Ga-rich GaAs surface is performed by using 2-4 keV energy and fluence ranging from 3 × 1013 ions/cm2 to 1 × 1018 ions/cm2. Formation of surface GaN is manifested as chemical shift. In situ core level and true secondary electron emission spectra by X-ray photoelectron spectroscopy are monitored to observe the chemical and electronic property changes. Using XPS line shape analysis by deconvolution into chemical state, we report that 3 keV N2+ ions and 7.2 × 1017 ions/cm2 are the optimal energy and fluence, respectively, for the nitridation of GaAs(0 0 1) surface at room temperature. The measurement of electron emission of the interface shows the dependence of work function to the chemical composition of the interface. Depth profile study by using Ar+ ion sputtering, shows that a stoichiometric GaN of 1 nm thickness forms on the surface. This, room temperature and molecular beam epitaxy compatible, method of forming GaN temperature can serve as an excellent template for growing low defect GaN epitaxial overlayers.  相似文献   

6.
Thin GaAs films were prepared by pulse plating from an aqueous solution containing 0.20 M GaCl3 and 0.15 M As2O3 at a pH of 2 and at room temperature. The current density was kept as 50 mA cm−2 the duty cycle was varied in the range 10-50%. The films were deposited on titanium, nickel and tin oxide coated glass substrates. Films exhibited polycrystalline nature with peaks corresponding to single phase GaAs. Optical absorption measurements indicated a direct band gap of 1.40 eV. Photoelectrochemical cells were made using the films as photoelectrodes and graphite as counter electrode in 1 M polysulphide electrolyte. At 60 mW cm−2 illumination, an open circuit voltage of 0.5 V and a short circuit current density of 5.0 mA cm−2 were observed for the films deposited at a duty cycle of 50%.  相似文献   

7.
Magnetotransport properties of magnetite thin films deposited on gallium arsenide and sapphire substrates at growth temperatures between 473 and 673 K are presented. The films were grown by UV pulsed laser ablation in reactive atmospheres of O2 and Ar, at working pressure of 8 × 10−2 Pa. Film stoichiometry was determined in the range from Fe2.95O4 to Fe2.97O4. Randomly oriented polycrystalline thin films were grown on GaAs(1 0 0) while for the Al2O3(0 0 0 1) substrates the films developed a (1 1 1) preferred orientation. Interfacial Fe3+ diffusion was found for both substrates affecting the magnetic behaviour. The temperature dependence of the resistance and magnetoresistance of the films were measured for fields up to 6 T. Negative magnetoresistance values of ∼5% at room temperature and ∼10% at 90 K were obtained for the as-deposited magnetite films either on GaAs(1 0 0) or Al2O3(0 0 0 1).  相似文献   

8.
Basic electronic properties of two-dimensional electron gas (2DEG) formed at GaN/AlGaN hetero-interface in large-scale (100 mm) wafer made by metal organic chemical vapour deposition (MOCVD) have been reported and discussed. From conventional Hall measurements, highest electron mobility was found to be μe∼1680 and 9000 cm2/V s at room temperature and at ∼5 K, respectively, for sheet electron density of ns∼8×1012 cm−2. In magneto-resistance (MR) measurements carried out at 1.5 K in Hall bar sample defined by photolithography and ion implantation, very clear Schubnikov de-Haas oscillations and integer quantum Hall effect were observed in diagonal (Rxx) and off-diagonal (Rxy) resistances, respectively. In addition, a good insulating nature of GaN layer is confirmed by capacitance-voltage (C-V) measurement. These results suggest the high-qualitiness of our 100 mm GaN/AlGaN high electron mobility transistor (HEMT) wafers comparable to those so far reported.  相似文献   

9.
Lattice-matched InGaP epilayers on GaAs (001) and InGaP/GaAs heterojunction bipolar transistors (HBTs) were successfully grown by solid-source molecular beam epitaxy (SSMBE) with a GaP decomposition source. A 3 μm thick InGaP epilayer shows that low temperature photoluminescence (PL) peak energy is as large as 1.998 eV, full width at half maximum (FWHM) is 5.26 meV, which is the smallest ever reported, and X-ray diffraction (XRD) rocking curve linewidth is as narrow as that of GaAs substrate. The electron mobilities at room temperature of nominally undoped InGaP layers obtained by Hall measurements are comparable to similar InGaP epilayer grown by solid-source molecular beam epitaxy (SSMBE) with other sources or other growth techniques. The large area InGaP/GaAs HBTs show very good Dc characteristics.  相似文献   

10.
The electronic structure and hence the valence charge distribution of germanium at 296 and 200 K has been elucidated from structure factors measured by X-ray diffraction experiment using maximum entropy method (MEM) and multipole model. The methods adopted here are used to extract the fine details of the charge density distribution in the valence region. The charge density evaluated using both the models along the bond path and at the mid bond positions are compared and found to confirm the covalent bond existing in the solid. Topology of the charge density in the crystal is analysed and the critical points determined reveal unique spatial arrangement of valence charge in the direction normal to the bonding direction. The Laplacian of the charge density is also analysed for the understanding of the spatial distribution and the partitioning of the valence charge. The local charge concentration and the mapping of the electron pairs of the Lewis and valence shell electron pair repulsion (VSEPR) models have been done using electron localization function (ELF) and localized orbital locator (LOL).  相似文献   

11.
Bismuth thin films were prepared on glass substrates with RF magnetron sputtering and the effects of deposition temperature on surface morphology and their electrical transport properties were investigated. Grain growth of bismuth and the coalescence of grains were observed above 393 K with field emission secondary electron microscopy. Continuous thin films could not be obtained above 448 K because of the segregation of grains. Hall effect measurements showed that substrate heating yields the decrease of carrier density and the increase of mobility in exponential ways until 403 K. Resistivity of sputter deposited bismuth films has its minimum (about 0.7 × 10−3 Ω cm) in range of 403-433 K. Annealing of bismuth films deposited at room temperature was carried out in a radiation furnace with flowing hydrogen gas. The change of resistivity was not significant due to the cancellation of the decrease of carrier density and the increase of mobility. However, the abrupt change of electrical properties of film annealed above 523 K was observed, which is caused by the oxidation of bismuth layer.  相似文献   

12.
Formation of self-assembled InAs 3D islands on GaAs (1 1 0) substrate by metal organic vapor phase epitaxy has been investigated. Relatively uniform InAs islands with an average areal density of 109 cm−2are formed at 400 ° C using a thin InGaAs strain reducing (SR) layer. No island formation is observed without the SR layer. Island growth on GaAs (1 1 0) is found to require a significantly lower growth temperature compared to the more conventional growth on GaAs (1 0 0) substrates. In addition, the island height is observed to depend only weakly on the growth temperature and to be almost independent of the V/III ratio and growth rate. Low-temperature photoluminescence at 1.22 eV is obtained from the overgrown islands.  相似文献   

13.
In this work zinc substituted cobalt ferrite nanoparticles (Co0.5Zn0.5Fe2O4) have been synthesized by the coprecipitation method, using stable ferric, zinc and cobalt salts with sodium hydroxide, at different solution temperatures, from room temperature to 363 K. The cobalt-zinc ferrite crystalline phase, the particle size and the morphology of the resulting nanoparticles were studied by X-ray diffraction and transmission electron microscopy. The average crystallite size of each sample was calculated from the broadening of the most intense peak (3 1 1), using Scherrer's formula and the results show crystallite sizes increased from 6 to 8 nm by increasing the solution temperature from room temperature to 363 K respectively. Room temperature VSM measurements show that the prepared nanoparticles have superparamagnetic behavior and did not saturate at maximum field of 800 kA/m. The variation of AC-susceptibility of the samples with respect to temperature was measured and it was found that the blocking temperature increased from 198 to 270 K by increasing the solution temperature from room temperature to 363 K respectively. FTIR spectra of the samples have been analyzed in the frequency range 400-4000 cm−1, which also confirms the results of XRD.  相似文献   

14.
Nanometer-scale Al particles are fabricated and are embedded in a GaAs matrix using molecular beam epitaxial technique. The Al particle is self-assembled on GaAs by supplying an Al molecular beam. The average particle size is found to be 25 nm. The density is 7 × 1010 cm−2 when Al of 6.2 × 1015 atoms/cm2 is supplied on (1 0 0)GaAs at a substrate temperature of 300 °C. Clear hysteresis and plateaus in capacitance-voltage (C-V) curves are found in an Al-embedded sample, whereas monotonic increase of capacitance is obtained in a reference sample having an AlAs layer instead of Al. This difference results from trapping of electrons by the Al particles, suggesting that the particles have metallic character.  相似文献   

15.
SrAl2O4:Eu2+, Dy3+ is a phosphor characterized by a long persistent luminescence (PLUM) when excited with UV-vis light and ionizing radiation exhibiting intensity variation in the 10-320 K temperature range and maximum intensity around 320 K. In this work, we study the PLUM behavior of SrAl2O4:Eu2+, Dy3+ as a function of temperature from room temperature to 670 K in samples exposed to β irradiation. The room-temperature irradiation followed by PLUM readout revealed an integrated PLUM maximum at 323 K decreasing later. In contrast, irradiation and PLUM readout at temperatures above room temperatures produced integrated PLUM intensities maxima around 425 and 625 K. Successive cycles of preheating followed by irradiation and PLUM readout produced an increasing of the PLUM intensity as a function of cycle number. The observed phenomenon was ascribed to trapped electrons at the multiple trapping states related to the 425 and 625 K defects levels and electron transfer from one trap to another (electron hopping). Eventually, there is a return to the 5d level of Eu3+ cations with the characteristic PLUM emission by thermal energy supplied at room temperature (lattice vibrations) or by a preheating-irradiation-readout cycle. This property may allow keeping up the PLUM properties of SrAl2O4:Eu2+, Dy3+ phosphors through background radiation self exposure and adequate heating processes.  相似文献   

16.
GaN phase is synthesized using systemic implantation of nitrogen ions of multiple energies (290, 130 and 50 keV) into Zn-doped GaAs (1 0 0) at room temperature and subsequent annealing at 850 °C for 30 min in Ar + H2 atmosphere. The implanted doses of nitrogen ions are 5 × 1016 and 1 × 1017 ions-cm−2. Glancing angle X-ray diffraction studies show that hexagonal phase of GaN were formed. The photoluminescence studies show the emission from the band edge as well as from point defects.  相似文献   

17.
Electroluminescence (EL) properties of Si-based light emitting diodes with β-FeSi2 particles active region grown by reactive deposition epitaxy are investigated. EL intensity of β-FeSi2 particles versus excitation current densities has different behaviors at 8, 77 K and room temperature, respectively. The EL peak energy shifted from 0.81 to 0.83 eV at 77 K with the increase of current density from 1 to 70 A/cm2. Temperature dependence of the peak energy can be well fitted by semi-empirical Varshni's law with the parameters of α=4.34 e-4 eV/K and β=110 K. These results indicate that the EL emission originates from the band-to-band transition with the band gap energy of 0.824 eV at 0 K.  相似文献   

18.
This paper attempts to realize unpinned high-k insulator-semiconductor interfaces on air-exposed GaAs and In0.53Ga0.47As by using the Si interface control layer (Si ICL). Al2O3 was deposited by ex situ atomic layer deposition (ALD) as the high-k insulator. By applying an optimal chemical treatment using HF acid combined with subsequent thermal cleaning below 500 °C in UHV, interface bonding configurations similar to those by in situ UHV process were achieved both for GaAs and InGaAs after MBE growth of the Si ICL with no trace of residual native oxide components. As compared with the MIS structures without Si ICL, insertion of Si ICL improved the electrical interface quality, a great deal both for GaAs and InGaAs, reducing frequency dispersion of capacitance, hysteresis effects and interface state density (Dit). A minimum value of Dit of 2 × 1011 eV−1 cm−2 was achieved both for GaAs and InGaAs. However, the range of bias-induced surface potential excursion within the band gap was different, making formation of electron layer by surface inversion possible in InGaAs, but not possible in GaAs. The difference was explained by the disorder induced gap state (DIGS) model.  相似文献   

19.
Fullerene C60 thin films on glass substrate (around 2000 ? thickness) were prepared by thermal evaporation technique. The structural, surface morphology and optical properties of the films were studied. The optical properties of fullerene C60 were investigated in the spectral range 200 nm to 900 nm using a UV-Vis spectrophotometer at room temperature as well as at liquid nitrogen temperature (77 K). The optical band gap at room temperature is found to be 2.30 eV, which gradually decreases with lowering the temperature and reaches to 2.27 at 77 K. The thickness and refractive index of fullerene C60 film were calculated by ellipsometry. From the X-ray analysis, we have calculated the grain size, dislocation density, number of crystallite per unit area, and strain of the film at room temperature. The surface morphology of film was analyzed by scanning electron microscope (SEM). The present result show that the fullerene C60 film becomes more conducting at low temperature.  相似文献   

20.
Structural, electronic, elastic and thermal properties of Mg2Si   总被引:1,自引:0,他引:1  
First-principles calculations of the lattice parameter, electron density maps, density of states and elastic constants of Mg2Si are reported. The lattice parameter is found to differ by less than 0.8% from the experimental data. Calculations of density of states and electron density maps are also performed to describe the orbital mixing and the nature of chemical bonding. Our results indicate that the bonding interactions in the Mg2Si crystal are more covalent than ionic. The quasi-harmonic Debye model, by means of total energy versus volume calculations obtained with the plane-wave pseudopotential method, is applied to study the elastic, thermal and vibrational effects. The variations of bulk modulus, Grüneisen parameter, Debye temperature, heat capacity Cv, Cp and entropy with pressure P up to 7 GPa in the temperature interval 0-1300 K have been systemically investigated. Significant differences in properties are observed at high pressure and high temperature. When T<1300 K, the calculated entropy and heat capacity agree reasonably with available experimental data. Therefore, the present results indicate that the combination of first-principles and quasi-harmonic Debye model is an efficient approach to simulate the behavior of Mg2Si.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号