首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Room temperature photoluminescence quantum efficiency of the alloy of Ca1−xEuxGa2S4 was measured as a function of x, and was found to be nearly unity under excitation at peak wavelength of excitation spectrum (510 nm) in the x range of 0.01≤x≤0.2. At larger x values, it tends to decrease, but still as high as 30% for stoichiometric compound EuGa2S4. Taking these backgrounds into account, pump-probe experiments were done with Ca1−xEuxGa2S4 for searching optical gain at x=0.2. The optical gain of nearly 30 cm−1 was confirmed to exist, though the pumping induced transient absorption which seems to limit the higher gain was found.  相似文献   

2.
Utilizing Maker fringe (MF) method, second-harmonic generation (SHG) has been observed within the GeS2-Ga2S3-CdS pseudo-ternary glasses through thermal/electrical poling technique. The SHG phenomenon was considered to be the result of breakage of the glassy macroscopic isotropy originated from the reorientations of dipoles during the thermal/electrical poling process. Under the same poling condition conducted with 5 kV and 280 °C for 30 min, the maximum value of second-order nonlinear susceptibility χ(2) of the poled (100−x)GeS2·x(0.5Ga2S3·0.5CdS) glasses was obtained to be ≈4.36 pm/V when the value of x is equal to 30. Nonlinear dependence of χ(2) on compositions of these glasses can be well explained according to the theory related to the reorientation of dipoles.  相似文献   

3.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

4.
Crystal structure, thermogravimetry (TG), thermal expansion coefficient (TEC), electrical conductivity and AC impedance of (Ba0.5Sr0.5)1-xLaxCo0.8Fe0.2O3-δ (BSLCF; 0.05?x?0.20) were studied in relation to their potential use as intermediate temperature solid oxide fuel cell (IT-SOFC) cathode. A single cubic pervoskite was observed by X-ray diffraction (XRD). The TEC of BSLCF was increasing slightly with the increasing content of La, and all the compounds showed abnormal expansion at high temperature. Proved by the TG result, it was associated with the loss of lattice oxygen. The electrical conductivity, which is the main defect of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ (BSCF), was improved by La doping, e.g., the compound of x=0.20 demonstrated a conductivity of σ=376 S cm−1 at 392 °C. The increase of electrical conductivity resulted from the increased concentration of charge carrier induced by La doping. In addition, the AC impedance revealed the better electrochemical performance of BSLCF. For example, at 500 °C, the sample with composition x=0.15 yielded the resistance values of 2.12 Ω cm2, which was only 46% of BSCF.  相似文献   

5.
Spectroscopic ellipsometry measurements of CuInSe2 (CIS) and CuIn1−xGaxSe2 (CIGS) over a range of Cu compositions reveal that there are important differences in electronic and optical properties between α-phase CIS/CIGS and Cu-poor CIS/CIGS. We find a reduction in the imaginary part of the dielectric function ?2 in the spectral region, 1-3 eV. This reduction can be explained in terms of the Cu-3d density of states. An increase in band gap is found for Cu-poor CIS and CIGS due to the reduction in repulsive interaction between Cu-3d and Se-4p states. We also characterize the dielectric functions of polycrystalline thin-film α-phase CuIn1−xGaxSe2 (x=0.18 and 0.36) to determine their optical properties and compare them with similar compositions of bulk polycrystalline CuIn1−xGaxSe2. The experimental results have important implications for understanding the functioning of polycrystalline optoelectronic devices.  相似文献   

6.
NbNx films were deposited on Nb substrate using pulsed laser deposition. The effects of substrate deposition temperature, from room temperature to 950 °C, on the preferred orientation, phase, and surface properties of NbNx films were studied by X-ray diffraction, atomic force microscopy, and electron probe micro analyzer. We find that the substrate temperature is a critical factor in determining the phase of the NbNx films. For a substrate temperature up to 450 °C the film showed poor crystalline quality. With temperature increase the film became textured and for a substrate temperature of 650−850 °C, mix of cubic δ-NbN and hexagonal phases (β-Nb2N + δ′-NbN) were formed. Films with a mainly β-Nb2N hexagonal phase were obtained at deposition temperature above 850 °C. The c/a ratio of β-Nb2N hexagonal shows an increase with increased nitrogen content. The surface roughness of the NbNx films increased as the temperature was raised from 450 to 850 °C.  相似文献   

7.
Lead-free (Na0.5K0.5)NbO3-based piezoelectric ceramics were successfully fabricated by substituting with a small amount of BiFeO3 (BF). Difficulty in sintering of pure NKN ceramics can be eased by adding a few molar percent of BF, and the crystalline structure is also changed, leading to a morphotropic phase boundary (MPB) between ferroelectric orthorhombic and rhombohedral phases. The MPB exists near the 1-2 mol% BF-substituted NKN compositions, exhibiting enhanced ferroelectric, piezoelectric, and electromechanical properties of Pr=23.3 μC/cm2, d33=185 pC/N, and kp=46%, compared to an ordinarily sintered pure NKN ceramics. The MPB composition has a Curie temperature of ∼370 °C, comparable to that of some commercial PZT materials.  相似文献   

8.
Structural and magnetic properties of Cu substituted Ni0.50−xCuxZn0.50Fe2O4 ferrites (where x=0.0-0.25) prepared by an auto combustion method have been investigated. The X-ray diffraction patterns of these compositions confirmed the formation of the single phase spinel structure. The lattice parameter increases with the increase in Cu2+ content obeying Vegard's law. The particle size of the starting powder compositions varied from 22 to 72 nm. The theoretical density increases with increase in copper content whereas the Néel temperature decreases. The bulk density, grain size and permeability increases up to a certain level of Cu2+ substitution, beyond that all these properties decrease with increase in Cu2+ content. The bulk density increases with increase in sintering temperatures up to 1250 °C for the parent composition, while for substituted compositions it increases up to 1200 °C. Due to substitution of Cu2+, the real part of the initial permeability increases from 97 to ∼390 for the sample sintered at 1100 °C and from 450 to 920 for the sample sintered at 1300 °C. The ferrites with higher initial permeability have a relatively lower resonance frequency, which obey Snoek's law. The initial permeability strongly depends on average grain size and intragranular porosity. The saturation magnetization, Ms, and the number of Bohr magneton, n(μB), decreases up to x=0.15 due to the reduction of the A-B interaction in the AB2O4 spinel type ferrites. Beyond that value of x, the Ms and the n(μB) values are enhanced. The substitution of Cu2+ influences the magnetic parameters due to modification of the cation distribution.  相似文献   

9.
The ferrite compositions of (Ni0.25−xMgxCu0.2Zn0.55)Fe2O4 with x=0.0x=0.0, 0.07, 0.13, 0.18, and 0.25 were synthesized through nitrate-citrate auto-combustion method. The as-burnt powders showed the presence of crystalline cubic spinel ferrite with about 19–22 nm crystallite sizes. The resultant powders were calcined at 700 °C/2 h and pressed ferrites were sintered at 950 °C/4 h. The initial permeability, magnetic loss and AC resistivity were measured in the frequency range 10 Hz–10 MHz. The permeability and AC resistivity were found to increase and the magnetic loss decreased with Mg substitution for Ni, up to x=0.18x=0.18. The very high permeability in the composition x=0.18x=0.18, was due to better densification, lower magnetostriction constant and inner stresses, etc. The AC resistivity of the composition was also highest. The composition would be better than NiCuZn-based material for more miniaturization of multi layer chip inductor.  相似文献   

10.
Bulk La2/3Sr1/3MnO3 ceramic samples prepared by thermal decomposition are investigated using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). An abnormal phenomenon, where three kinds of La2/3Sr1/3MnO3 phases with different structures and the same composition coexist in the same grain, has been observed. Besides the stable rhombohedral majority phase, the two other phases are a simple cubic structure with a=0.389 nm and a new hexagonal structure with a=0.544 nm, c=0.668 nm. The simple cubic phase is a residual phase of high-temperature due to the size effect and bondage of twin boundary. Image simulations have suggested that the new hexagonal phase is the La-Sr ordered structure with space group , which is converted from the disordered simple cubic phase. The formation mechanism of the ordered phase is explained from volume energy and interface energy considerations.  相似文献   

11.
The effect of post sintering annealing on the dielectric response of (Pb1−xBax)(Yb0.5Ta0.5)O3 ceramics in the diffuse phase transition range (x=0.2) has been investigated. The samples are prepared by conventional solid-state reaction method. The samples are sintered at 1300 °C for 2 h and annealed at different temperatures (800, 900 and 1000 °C) for 8 h and at 800 °C for different time durations (8, 12 and 24 h). A significant change in the dielectric response has been observed in all the samples. The dielectric constant increases remarkably and the dielectric loss tangent decreases. The dielectric peaks of the annealed samples are observed to be more diffused with noticeable frequency dispersion compared to the as sintered sample.  相似文献   

12.
Cu2SnS3 (CTS) powder has been synthesized at 200 °C by solid state reaction of pastes consisting of Cu and Sn salts and different sulphur compounds in air. The compositions of the products is elucidated from XRD and only thiourea is found to yield CTS without any unwanted CuSx or SnSy. Rietveld analysis of Cu2SnS3 is carried out to determine the structure parameters. XPS shows that Cu and Sn are in oxidation states +1 and +4, respectively. Morphology of powder as revealed by SEM shows the powder to be polycrystalline with porous structure. The band gap of CTS powder is found to be 1.1 eV from diffuse reflectance spectroscopy. Cu2SnS3 pellets are p-type with electrical conductivity of 10−2 S/cm. The thermal degradation and metal–ligand coordination in CTS precursor are studied with TGA/DSC and FT-IR, respectively, and a probable mechanism of formation of CTS has been suggested.  相似文献   

13.
Effect of La3+ doping at Ca2+ site in CaCu3Ti4O12 has been examined. Compositions with x=0.10, 0.20 and 0.30 were synthesized in the system Ca(1−3x/2)LaxCu3Ti4O12 by semi-wet method. Powder X-ray diffraction confirmed the formation of monophasic compounds. The structure remains cubic similar to CaCu3Ti4O12. Lattice parameter increases slightly with increasing La3+ concentration. Microstructure has been studied using scanning electron microscopy (SEM). Average grain size is in the range 2-4 μm for various compositions. Energy-dispersive spectrometer (EDS) studies confirm the stoichiometry of the synthesized materials. Dielectric constant, dielectric loss and conductivity of the samples decrease with increasing lanthanum concentrations.  相似文献   

14.
Stabled hexagonal phase Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) was prepared by solid-state method. Result revealed that the structure behavior of the SrAl2O4:Eu2+ calcined at 1350 °C in a reducing atmosphere for 5 h strongly depended on the Ba2+ concentration. With increasing Ba2+ concentration, a characteristic hexagonal phase can be observed. When 37-70% of the strontium is replaced by barium, the structure of the prepared sample is pure hexagonal. Photoluminescence and excitation spectra of the samples with different x and doped with 2% Eu2+ were investigated. Changes in the emission spectra were observed in the two different phases. The green emission at 505 nm from Eu2+ was found to be quite strong in the hexagonal phase. The intensity and peak position of the green luminescence from Eu2+ changed with increasing content of Ba2+. The strongest green emission was obtained from Sr0.61Ba0.37Al2O4:Eu2+. The decay characteristics of Sr1−xBaxAl2O4:Eu2+ (x=0.37-0.70) showed that the life times also varied with the value of x. Furthermore, the emission colors and decay times varying with x could be ascribed to the variation of crystal lattice.  相似文献   

15.
A novel layered hydrotalcite-like material, Co7(H2O)2(OH)12(C2H4S2O6), has been prepared hydrothermally and the structure determined using single crystal X-ray diffraction (a=6.2752(19) Å, b=8.361(3) Å, c=9.642(3) Å, α=96.613(5)°, β=98.230(5)°, γ=100.673(5)°, R1=0.0551). The structure consists of brucite-like sheets where 1/6 of the octahedral sites are replaced by two tetrahedrally coordinated Co(II) above and below the plane of the layer. Ethanedisulfonate anions occupy the space between layers and provide charge balance for the positively charged layers. The compound is ferrimagnetic, with a Curie temperature of 33 K, Curie-Weiss θ of −31 K, and a coercive field of 881 Oe at 5 K.  相似文献   

16.
Particulate composites with composition (x)BaTiO3+(1−x)Ni0.92Co0.03Cu0.05Fe2O4 in which x varies as 1, 0.85, 0.70, 0.55 and 0 (in mol%) were prepared by the conventional double sintering ceramic technique. The presence of two phases viz. ferromagnetic (Ni0.92Co0.03Cu0.05Fe2O4) and ferroelectric (BaTiO3) was confirmed by X-ray diffraction analysis. The dc resistivity and thermo-emf measurements were carried out with variation of temperature. The ac conductivity (σac) measurements investigated in the frequency range 100 Hz to 1 MHz conclude that the conduction in these composites is due to small polarons. The variation of dielectric constant and loss tangent with frequency (20 Hz to 1 MHz) was studied. The static magnetoelectric conversion factor, i.e. dc (dE/dH)H was measured as a function of intensity of applied magnetic field. The changes were observed in electrical properties as well as in magnetoelectric voltage coefficient as the molar ratio of the constituent phases was varied. A maximum value of magnetoelectric conversion factor of 536.06 μV/cm Oe was observed for the composite with 70% BaTiO3+30% Ni0.92Co0.03Cu0.05Fe2O4 at a dc magnetic field of 2.3 K Oe. The maximum magnetoelectric conversion output has been explained in terms of ferrite-ferroelectric content, applied static magnetic field and resistivity.  相似文献   

17.
Tuning the hydrogen storage properties of complex metal hydrides is of vast interest. Here, we investigate the hydrogen release and uptake pathways for a reactive hydride composite, LiBH4−NaAlH4 utilizing in situ synchrotron radiation powder X-ray diffraction experiments. Sodium alanate transforms to sodium borohydride via a metathesis reaction during ball milling or by heating at T∼95 °C. NaBH4 decomposes at ∼340 °C in dynamic vacuum, apparently directly to solid amorphous boron and hydrogen and sodium gas and the latter two elements are lost from the sample. Under other conditions, T=400 °C and p(H2)=∼1 bar, NaBH4 only partly decomposes to B and NaH. On the other hand, formation of LiAl is facilitated by dynamic vacuum conditions, which gives access to the full hydrogen contents in the LiBH4−NaAlH4 system. Formation of AlB2 is observed (T∼450 °C) and other phases, possibly AlBx or Al1−xLixB2, were observed for the more Li-rich samples. This may open new routes to the stabilization of boron in the solid state in the dehydrogenated state, which is a challenging and important issue for hydrogen storage systems based on borohydrides.  相似文献   

18.
Na1−xLixNbO3 ceramics with composition 0.05≤x≤0.30 were prepared by solid-state reaction method and sintered in the temperature range 1100-1150 °C. These ceramics were characterised by X-ray diffraction as well as dielectric permittivity measurements and Raman spectroscopy. Dielectric properties of ceramics belonging to the whole composition domain were investigated in a broad range of temperatures from 300 to 750 K and frequencies from 0.1 to 200 kHz. The Rietveld refinement powder X-ray diffraction analysis showed that these ceramics have a single phase of perovskite structure with orthorhombic symmetry for x≤0.15 and two phases coexistence of rhombohedral and orthorhombic above x=0.20. The evolution of the permittivity as a function of temperature and frequency showed that these ceramics Na1−xLixNbO3 with composition 0.05≤x≤0.15 present the classical ferroelectric character and the phase transition temperature TC increases as x content increases. The polarisation state was checked by pyroelectric and piezoelectric measurements. For x=0.05, the piezoelectric coefficient d31 is of 2pC/N. The evolution of the Raman spectra was studied as a function of temperatures and compositions. The results of the Raman spectroscopy study confirm our dielectric measurements, and they indicate clearly the transition from the polar ferroelectric phase to the non-polar paraelectric one.  相似文献   

19.
Phase relation studies in the Gd2O3-Nd2O3 system have been performed on (Gd1−xNdx)2O3 samples (0?x?1) with the purpose of performing a systematic study of the composition effects on their structural and magnetic properties. All the samples were synthesized by calcination of the related oxalates at 1200 °C in order to ensure the complete decomposition of the oxalates. Five phase regions, namely an A-type hexagonal, a B-type monoclinic, a C-type cubic solid solution and two biphasic mixtures of the former three phase fields were detected in this system. The magnetic susceptibility measurements showed the presence of antiferromagnetic interactions in all samples. The Curie-Weiss temperature shows a nonlinear dependence on concentration. Deduced effective magnetic moments are close to the free ion values.  相似文献   

20.
Y-type polycrystalline hexagonal ferrites Ba2Co2−xyZnxCuyFe12O22 with 0≤x≤2 and 0≤y≤0.8 were prepared by the mixed-oxide route. Single phase Y-type ferrite powders were obtained after calcinations at 1000 °C. Samples sintered at 1200 °C show a permeability that increases with the substitution of Zn for Co and display maximum permeability of μ′=35 at 1 MHz for x=1.6 and y=0.4. A resonance frequency fr=500 MHz is observed for Zn-rich ferrites with y=0 and 0.4. The saturation magnetization increases with substitution of Zn for Co. Addition of Bi2O3 shifts the temperature of maximum shrinkage down to T≤950 °C. Moreover, an increase of the Cu-concentration further lowers the sintering temperature to T≤900 °C, enabling co-firing of the ferrites with Ag metallization for multilayer technologies. However, low-temperature firing reduces the permeability to μ′=10 and the resonance frequency is shifted to 1 GHz. Thus substituted hexagonal Y-type ferrites can be used as soft magnetic materials for multilayer inductors for high frequency applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号