首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using cetyltrimethyl ammonium bromide (CTAB) as the template and sodium silicate as the silicon source, the MCM-41 mesoporous molecular sieves with Eu incorporated in the framework were synthesized under microwave irradiation condition and the influence of the Si/Eu molar ratio on the crystalline structure, textural properties and the long-range ordering of the resulting sample was investigated by various physicochemical techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), diffuse reflectance ultraviolet-visible spectroscopy (UV-vis), thermal gravimetric-differential scanning calorimeter (TG-DSC) and N2 physical adsorption. The results of N2 adsorption and XRD reveal that the synthesized sample has the ordered hexagonal mesoporous structure. UV-vis spectra provide the strong evidences that most of europium ions were incorporated into the framework of the MCM-41 sample. The crystalline structure, textural properties and mesoporous ordering of the resultant mesoporous materials are related to the amount of europium incorporation. Small amount europium incorporated into the silica-based MCM-41 does not strongly modify the structure of mesoporous molecular sieve. An increase of the Eu content in sample led to reduction of the specific surface area and the deterioration of the long-range ordering.  相似文献   

2.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

3.
The influence of the processing parameters on the properties of zirconia, alumina and silica MCM-41 has been investigated. Digestion of the precursors leads to zirconia, alumina and silica MCM-41 with higher surface area and better thermal stability. The effects of digestion are attributed to increased dehydroxylation, strengthening of the network between primary particles, and to a decrease in the number of surface defects. In the case of zirconia and alumina, digestion also increased the surface acidity. This may be due to the smaller crystallites which expose low-coordinated sites at the surface. Al-MCM-41 prepared by post-synthesis grafting of aluminum is compared with MCM-41 prepared by direct incorporation of aluminum during synthesis. The surface Si/Al ratio was determined using XPS and correlated to the catalytic activity of the Al-MCM-41 for the synthesis of jasminaldehyde.  相似文献   

4.
X‐ray radiolysis of a Cu(CH3COO)2 solution was observed to produce caltrop‐shaped particles of cupric oxide (CuO, Cu2O), which were characterized using high‐resolution scanning electron microscopy and micro‐Raman spectrometry. X‐ray irradiation from a synchrotron source drove the room‐temperature synthesis of submicrometer‐ and micrometer‐scale cupric oxide caltrop particles from an aqueous Cu(CH3COO)2 solution spiked with ethanol. The size of the caltrop particles depended on the ratio of ethanol in the stock solution and the surface of the substrate. The results indicated that there were several synthetic routes to obtain caltrop particles, each associated with electron donation. The technique of X‐ray irradiation enables the rapid synthesis of caltrop cupric oxide particles compared with conventional synthetic methods.  相似文献   

5.
Highly ordered mesoporous material MCM-41 was synthesized from tetraethylorthosilicate (TEOS) as Si source and cetyltrimethylammonium bromide (CTAB) as template. Well-dispersed NiO nanoparticles were introduced into the highly ordered mesoporous MCM-41 by chemical precipitation method to prepare the highly ordered mesoporous NiO/MCM-41 composite. X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), and nitrogen adsorption–desorption measurement were used to examine the morphology and the microstructure of the obtained composite. The morphological study clearly revealed that the synthesized NiO/MCM-41 composite has a highly ordered mesoporous structure with a specific surface area of 435.9 m2 g−1. A possible formation mechanism is preliminary proposed for the formation of the nanostructure. The adsorption performance of NiO/MCM-41 composite as an adsorbent was further demonstrated in the removal azo dyes of methyl orange (MO), Congo red (CR), methylene blue (MB) and rhodaming B (RB) under visible light irradiation and dark, respectively. The kinetics and mechanism of removal methylene blue were studied. The results show that NiO/MCM-41 composite has a good removal capacity for organic pollutant MB from the wastewater under the room temperature. Compared with MCM-41 and NiO nanoparticles, 54.2% and 100% higher removal rate were obtained by the NiO/MCM-41 composite.  相似文献   

6.
Nanostructured copper (II) oxide was formed on clean copper foil at room temperature using activated oxygen produced by RF discharge. CuO particles of approximately 10-20 nm were observed on the surface by Scanning Tunneling Microscopy (STM). The copper states and oxygen species of the model cupric oxide were studied by means of X-ray Photoelectron Spectroscopy (XPS). These oxide particles demonstrated abnormally high reactivity with carbon monoxide (CO) at temperatures below 100 °C. The XPS data showed that the interaction of CO with the nanostructured cupric oxide resulted in reduction of the CuO particles to Cu2O species. The reactivity of the nanostructured cupric oxide to CO was studied at 80 °C using XPS in step-by-step mode. The initial reactivity was estimated to be 5 × 10−5 and was steadily reduced down to 5 × 10−9 as the exposure was increased. O1s spectral analysis allowed us to propose that the high initial reactivity was caused by the presence of non-lattice oxygen states on the surface of the nanostructured CuO. We established that reoxidation of the partially reduced nanostructured cupric oxide by molecular oxygen O2 restored the highly reactive oxygen form on the surface. These results allowed us to propose that the nanostructured cupric oxide could be used for low temperature catalytic CO oxidation. Some hypotheses concerning the nature of the non-lattice oxygen species with high reactivity are also discussed.  相似文献   

7.
Nanostructured CuO films have been grown on to the glass substrate by varying the deposition time from 10 to 30 min and substrate temperature from 300 to 400 °C by a simple ultrasonic spray pyrolysis technique, using aqueous a cupric nitrate solution as precursor. The effect of the substrate temperature on the textural, structural, electrical, and gas sensing properties of CuO films was studied and correlated. Thermal analysis of the dried precursor shows the elimination of physisorbed and chemisorbed water. It suggests the formation of CuO phase on substrate at temperature of 300 °C. X-ray diffractograms of the films indicate the formation of polycrystalline monoclinic CuO having monoclinic with crystallite size around 18 nm. The texture coefficient finds the (0 0 2) plane as the preferred orientation in films. The microstrain and dislocation densities have been calculated and found to decreases with increase in substrate temperature. The scanning electron micrographs indicate the formation of trapezium like facet structures on the film surface. AFM analysis shows uniform deposition of the CuO film over the entire substrate surface. Observations reveal that the film deposited at 300 °C show comparatively higher activation energy and appreciable response to ammonia at room temperature. The use of aqueous cupric nitrate as precursor results in the deposition of single phase copper oxide films.  相似文献   

8.
Colloidal cupric oxide (CuO) nanoparticles were formed by using a colloid-thermal synthesis process. X-ray diffraction patterns, transmission electron microscopy (TEM) images, high-resolution TEM images, and X-ray energy dispersive spectrometry profiles showed that the colloidal CuO nanoparticles were formed. The optical band-gap energy of CuO nanoparticles at 300 K, as determined from the absorbance spectrum, was 3.63 eV. A photoluminescence spectrum at 300 K showed that a dominant emission peak appeared at the blue region. X-ray photoelectron spectroscopy profiles showed that the O 1s and the Cu 2p peaks corresponding to the CuO nanoparticles were observed.  相似文献   

9.
ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel–Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.  相似文献   

10.
以十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,以超声波为辅助手段于酸性介质中制备出了MCM-41介孔分子筛,采用XRD、TEM、FTIR等手段对样品进行了分析表征.结果表明,所合成样品具备MCM-41所特有的六方排列的一维孔道结构和较高的有序度,所合成的MCM-41平均粒径为11nm,孔径约为2.7nm.  相似文献   

11.
采用XRD,FTIR,UV-Vis DRS和TG等手段对四丁基锡改性的MCM-41及其在高纯氧气流中焙烧后得到的Sn-O-MCM-41介孔分子筛进行了表征,发现焙烧前后样品的水热稳定性、表面酸性以及表面锡物种的配位形式明显不同。焙烧后表面锡原子仍保持四配位形式,水热稳定性提高,表面L酸酸性增强。据此对Sn-O-MCM-41样品催化活性提高的原因进行了讨论。  相似文献   

12.
Chuanyue Hu  Jun Guo  Jin Wen 《Ionics》2013,19(2):253-258
Copper oxide particles with different morphology (flower-like, peach kernel-like, and dandelion-like) are prepared with hydrothermal method by adjusting chitosan ((C6H11NO4)n) concentration in aqueous mixed solutions of ammonia and Cu(NO3)2. Various morphologies of porous cupric oxide (CuO) particles are formed by agglomerated nanosheet primary particles and lead to different electrochemical performance of electrodes. The peach kernel-shaped CuO exhibits high reversible capacity and rate capability. The reversible capacity is 722.7 mAh g?1 at 0.1 C in the first cycle and 339 mAh g?1 after 50 cycles at 0.2, 0.5, 1.0, and 2.0 C ratio. The higher reversible capacities and good cycling performance are attributed to the larger specific surface area, leading to better contact between CuO and electrolyte.  相似文献   

13.
Pure-silica mesoporous materials doped by titanium have been prepared by direct synthesis method and post-synthetic impregnation method. The effects of different Ti-doping methods on the structure of pure-silica mesoporous materials have been researched. X-ray diffraction, transmission electron microscopy, scanning electronic microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray absorption spectrum and nitrogen adsorption-desorption isotherms have been employed to characterize the products. It has been found that structural properties were strongly related to the amount and the way of titanium introduction. The mesoporous ordering of the samples that have been prepared by direct synthesis method and post-synthetic method became poor with the increasing of titanium amount. The XANES and EXAFS spectra confirmed that the titanium have been inserted into the framework of MCM-41. The titanium grafted in the Ti-MCM-41 in fourfold coordination, and the titanium doped in the Ti/MCM-41 in higher coordination sites.  相似文献   

14.
This work reports a systematic study of ordered mesoporous silicas (OMSs) synthesized with and without hydrothermal treatment at 373 K for a series of surfactants of different alkyl chain length (from C10 to C18). For these samples nitrogen adsorption and small angle X-ray scattering (SAXS) data were measured to characterize their adsorption and surface properties. Namely, nitrogen adsorption isotherms were used to evaluate their specific surface area, pore volume and pore size distribution, whereas SAXS data provided information about their structural ordering. It is shown that while the room temperature synthesis afforded OMS samples with cubic MCM-48 structure, an additional 5-day hydrothermal treatment of these samples at 373 K caused their transformation to MCM-41 (two-dimensional hexagonal structure) and improved their pore uniformity, which was manifested by reducing the width of pore size distribution.  相似文献   

15.
Rare earth Ce-incorporated MCM-41 mesoporous molecular sieves (CeMCM-41) were synthesized via a direct and nonhydrothermal method at room temperature from sodium silicate and ammonium cerium (IV) nitrate as raw materials. Cetyltrimethyl ammonium bromide (CTAB) was used as a template. The resultant samples were characterized by means of powder X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance ultraviolet–visible spectroscopy (UV–vis) and N2 physical adsorption, respectively. The effect of the Si/Ce molar ratio on the crystalline structure and textural properties of CeMCM-41 was also investigated. The experimental results show that ordered CeMCM-41 mesoporous molecular sieves were successfully synthesized at room temperature and the resultant mesoporous materials have specific surface areas in the range of 594–1369 m2/g and average pore sizes in the range of ca. 2.5–2.8 nm. It has been found that the structural properties are strongly related to the amounts of cerium incorporation. When the cerium content increased in the samples, the intensity of the peak (1 0 0) was gradually reduced, and the surface area and structural regularity were diminished.  相似文献   

16.
Ionic liquid-functionalized alumino-silicate MCM-41 hybrid mesoporous materials have been synthesized with two-step approach, by means of in situ skeleton doping with aluminium and post surface grafting with N-methylimidazole ionic liquid groups. The samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), N2 adsorption-desorption, Fourier transform infrared (FTIR) spectra, 27Al and 13C MAS NMR spectra and temperature-programmed desorption (TPD) of NH3. The results indicated that the bifunctionalized MCM-41 possessed ordered mesostructure. Aluminium was efficiently introduced into the framework of the mesostructure, generating Lewis and Brönsted acid sites. N-methylimidazole ionic liquid groups were covalently grafted onto the surface of mesoporous materials. The as-synthesized bifunctional MCM-41 showed good catalytic performance in the coupling reaction of CO2 and propylene oxide.  相似文献   

17.
吴淑杰  郭晔  阚秋斌 《光谱实验室》2011,28(5):2504-2506
以十六烷基三甲基溴化铵(CTAB)为表面活性剂,以正硅酸乙酯(TEOS)为硅源,采用水热合成法制备了介孔分子筛MCM-41,并利用浸渍法将磷钨酸(HPW)负载在MCM-41分子筛上,得到HPW/MCM-41催化剂f采用X射线衍射、傅里叶变换红外光谱、透射电镜等手段对负载型催化剂进行了表征.结果表明,磷钨酸负载到MCM-...  相似文献   

18.
采用微波辅助水热法制备介孔分子筛MCM-41,并用浸渍法将左氧氟沙星(LVFX)组装在MCM-41均一的六方形孔道中,制备出新型载药复合物LVFX/MCM-41。用粉末X射线衍射(XRD)、低温氮吸附、傅里叶变换红外光谱(FTIR)及差热-热重(TGA-DTA)分析对MCM-41以及LVFX/ MCM-41复合物进行表征,合成的介孔分子筛MCM-41的孔径为2.382 nm,比表面积为1 015 m2·g-1。对MCM-41、LVFX/MCM-41、LVFX(固态)及LVFX(溶液)的荧光光谱研究结果显示,LVFX/MCM-41的荧光光谱比组装前发生明显红移,表明MCM-41孔道内表面的羟基和LVFX形成氢键,羟基上的电子云向LVFX分子上的吸电子基团转移;同时MCM-41和LVFX之间形成新环,使电子云能在更大的环上移动,药物分子的共轭体系扩大,荧光光谱峰红移。MCM-41与左氧氟沙星之间强的相互作用为研发以MCM-41为载体的新型释药系统提供了理论依据。  相似文献   

19.
将有机发光小分子8-羟基喹啉铝(Alq3)组装进介孔MCM-41中,采用XRD、IR、荧光光谱等测试方法对组装体Alq3-MCM-41进行表征。XRD表明,Alq3-MCM-41保持了有序的介孔骨架结构;IR谱图中,在波数1542 cm-1处出现的特征吸收谱带表明组装体中Alq3在孔道中与羟基成键;荧光光谱表明,组装体中MCM-41与Alq3分子间发生了能量转移,从而使Alq3-MCM-41具有优异的发光性能;荧光强度随组装量的增多而显著增强,这主要是由于在Alq3-MCM-41中,MCM-41有序孔道的微环境使Alq3分子分散性提高,减弱了Alq3分子间的聚集或缔合现象,从而有效地提高了其发光强度。  相似文献   

20.
Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 °C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 °C utilizing Fe/MCM-41 as a catalytic template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号