首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the development of a general strategy for site-specific labeling of proteins with small molecules by posttranslational modification enzyme, phosphopantetheinyl transferase Sfp. The target proteins are expressed as fusions to the peptide carrier protein (PCP) excised from nonribosomal peptide synthetase, and Sfp catalyzes the covalent modification of a specific serine residue on PCP by the small molecule-phosphopantetheinyl conjugate. The labeling reaction proceeds with high specificity and efficiency, targeting PCP fusion proteins in the cell lysate. The PCP tag has been shown to be compatible with various proteins, and Sfp-catalyzed PCP modification, compatible with various small-molecule probes conjugated to coenzyme A, highlighting the potential of the PCP tag for site-specific protein labeling with small molecules.  相似文献   

2.
We report here the generation of mutants of the human O(6)-alkylguanine-DNA alkyltransferase (hAGT) for the efficient in vivo labeling of fusion proteins with synthetic reporter molecules. Libraries of hAGT were displayed on phage, and mutants capable of efficiently reacting with the inhibitor O(6)-benzylguanine were selected based on their ability to irreversibly transfer the benzyl group to a reactive cysteine residue. Using synthetic O(6)-benzylguanine derivatives, the selected mutant proteins allow for a highly efficient covalent labeling of hAGT fusion proteins in vivo and in vitro with small molecules and therefore should become important tools for studying protein function in living cells. In addition to various applications in proteomics, the selected mutants also yield insight into the interaction of the DNA repair protein hAGT with its inhibitor O(6)-benzylguanine.  相似文献   

3.
Chemical proteomics relies primarily on click‐chemistry‐based protein labeling and biotin‐streptavidin enrichment, but these techniques have inherent limitations. Enrichment of intracellular proteins using a totally synthetic host–guest complex is described, overcoming the problem associated with the classical approach. We achieve this by affinity‐based protein labeling with a target‐specific probe molecule conjugated to a high‐affinity guest (suberanilohydroxamic acid–ammonium‐adamantane; SAHA‐Ad) and then enriching the labeled species using a cucurbit[7]uril bead. This method shows high specificity for labeled molecules in a MDA‐MB‐231 breast cancer cell lysate. Moreover, this method shows promise for labeling proteins in live cells.  相似文献   

4.
5.
Cell-penetrating peptides and proteins (CPPs) are important tools for the delivery of impermeable molecules into living mammalian cells. To enable these cells to internalize proteins fused to common oligohistidine affinity tags, we synthesized an artificial cell surface receptor comprising an N-alkyl derivative of 3beta-cholesterylamine linked to the metal chelator nitrilotriacetic acid (NTA). This synthetic receptor inserts into cellular plasma membranes, projects NTA headgroups from the cell surface, and rapidly cycles between the plasma membrane and intracellular endosomes. Jurkat lymphocytes treated with the synthetic receptor (10 microM) for 1 h displayed approximately 8,400,000 [corrected]NTA groups on the cell surface. Subsequent addition of the green fluorescent protein AcGFP fused to hexahistidine or decahistidine peptides (3 microM) and Ni(OAc)(2) (100 microM) enhanced the endocytosis of AcGFP by 150-fold (hexahistidine fusion protein) or 600-fold (decahistidine fusion protein) within 4 h at 37 degrees C. No adverse effects on cellular proliferation or morphology were observed under these conditions. By enabling common oligohistidine affinity tags to function as cell-penetrating peptides, this metal-chelating cell surface receptor provides a useful tool for studies of cellular biology [corrected]  相似文献   

6.
We report on a method for the multicolor imaging of cell surface proteins which is based on the labeling of carrier protein (CP) fusion proteins with different fluorophores. In one application, different generations of a cell surface protein can be sequentially labeled to discriminate between old and newly made copies. In another application, fusions to different CPs can be selectively labeled with different fluorophores in one sample. Both applications open up new ways for studying the properties of cell surface proteins of living cells.  相似文献   

7.
Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized SNAP-fusion proteins on cyclodextrin-coated surfaces yielded stable monolayers. The binding of the fusion proteins is specific and occurs with an affinity in the order of 10(6) M(-1) as determined by surface plasmon resonance. Reversible micropatterns of the fusion proteins on micropatterned cyclodextrin surfaces were visualized by using fluorescence microscopy. Furthermore, the guest-functionalized proteins could be assembled out of solution specifically onto the surface of cyclodextrin vesicles. The SNAP-tag labeling of proteins thus allows for assembly of modified proteins through a host-guest interaction on different surfaces. This provides a new strategy in fabricating protein patterns on surfaces and takes advantage of the high labeling efficiency of the SNAP-tag with designed supramolecular elements.  相似文献   

8.
Fluorescence imaging of living cells depends on an efficient and specific method for labeling the target cellular protein with fluorophores. Here we show that Sfp phosphopantetheinyl transferase-catalyzed protein labeling is suitable for fluorescence imaging of membrane proteins that spend at least part of their membrane trafficking cycle at the cell surface. In this study, transferrin receptor 1 (TfR1) was fused to peptide carrier protein (PCP), and the TfR1-PCP fusion protein was specifically labeled with fluorophore Alexa 488 by Sfp. The trafficking of transferrin-TfR1-PCP complex during the process of transferrin-mediated iron uptake was imaged by fluorescence resonance energy transfer between the fluorescently labeled transferrin ligand and TfR1 receptor. We thus demonstrated that Sfp-catalyzed small molecule labeling of the PCP tag represents a practical and efficient tool for molecular imaging studies in living cells.  相似文献   

9.
Supramolecular assembly of proteins on surfaces and vesicles was investigated by site‐selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site‐selectively labeled with bisadamantane by SNAP‐tag technology. The assembly of the bisadamantane functionalized SNAP‐fusion proteins on cyclodextrin‐coated surfaces yielded stable monolayers. The binding of the fusion proteins is specific and occurs with an affinity in the order of 106 M ?1 as determined by surface plasmon resonance. Reversible micropatterns of the fusion proteins on micropatterned cyclodextrin surfaces were visualized by using fluorescence microscopy. Furthermore, the guest‐functionalized proteins could be assembled out of solution specifically onto the surface of cyclodextrin vesicles. The SNAP‐tag labeling of proteins thus allows for assembly of modified proteins through a host–guest interaction on different surfaces. This provides a new strategy in fabricating protein patterns on surfaces and takes advantage of the high labeling efficiency of the SNAP‐tag with designed supramolecular elements.  相似文献   

10.
Intracellular protein labeling with small molecular probes that do not require a washing step for the removal of excess probe is greatly desired for real-time investigation of protein dynamics in living cells. Successful labeling of proteins on the cell membrane has been performed using mutant β-lactamase tag (BL-tag) technology. In the present study, intracellular protein labeling with novel cell membrane permeable probes based on β-lactam prodrugs is described. The prodrug-based probes quickly permeated the plasma membranes of living mammalian cells, and efficiently labeled intracellular proteins at low probe concentrations. Because these cell-permeable probes were activated only inside cells, simultaneous discriminative labeling of intracellular and cell surface BL-tag fusion proteins was attained by using cell-permeable and impermeable probes. Thus, this technology enables adequate discrimination of the location of proteins labeled with the same protein tag, in conjunction with different color probes, by dual-color fluorescence. Moreover, the combination of BL-tag technology and the prodrug-based probes enabled the labeling of target proteins without requiring a washing step, owing to the efficient entry of probes into cells and the fast covalent labeling achieved with BL-tag technology after bioactivation. This prodrug-based probe design strategy for BL-tags provides a simple experimental procedure with application to cellular studies with the additional advantage of reduced stress to living cells.  相似文献   

11.
Incorporation of chemical probes into proteins is a powerful way to elucidate biological processes and to engineer novel function. Here we describe an approach that allows ligation of synthetic molecules to target proteins in an intracellular environment. A cellular protein is genetically tagged with one-half of a split intein. The complementary half is linked in vitro to the synthetic probe, and this fusion is delivered into cells using a transduction peptide. Association of the intein halves in the cytosol triggers protein trans-splicing, resulting in the ligation of the probe to the target protein through a peptide bond. This process is specific and applicable to cytosolic and integral membrane proteins. The technology should allow cellular proteins to be elaborated with a variety of abiotic probes.  相似文献   

12.
The inverse-electron-demand Diels-Alder cycloaddition between trans-cyclooctenes and tetrazines is biocompatible and exceptionally fast. We utilized this chemistry for site-specific fluorescence labeling of proteins on the cell surface and inside living mammalian cells by a two-step protocol. Escherichia coli lipoic acid ligase site-specifically ligates a trans-cyclooctene derivative onto a protein of interest in the first step, followed by chemoselective derivatization with a tetrazine-fluorophore conjugate in the second step. On the cell surface, this labeling was fluorogenic and highly sensitive. Inside the cell, we achieved specific labeling of cytoskeletal proteins with green and red fluorophores. By incorporating the Diels-Alder cycloaddition, we have broadened the panel of fluorophores that can be targeted by lipoic acid ligase.  相似文献   

13.
Site-specific protein labeling with Escherichia coli biotin ligase (BirA) has been used to introduce fluorophores, quantum dots (QDs), and photocross-linkers onto recombinant proteins fused to a 15-amino acid acceptor peptide (AP) substrate for BirA and expressed on the surface of living mammalian cells. Here, we used phage display to engineer a new and orthogonal biotin ligase-AP pair for site-specific protein labeling. Yeast biotin ligase (yBL) does not recognize the AP, but we discovered a new 15-amino acid substrate for yBL called the yeast acceptor peptide (yAP), using two generations of phage display selection from 15-mer peptide libraries. The yAP is not recognized by BirA, and thus, we were able to specifically label AP and yAP fusion proteins coexpressed in the same cell with differently colored QDs. We fused the yAP to a variety of recombinant proteins and demonstrated biotinylation by yBL at the N-terminus, C-terminus, and within a flexible internal region. yBL is extremely sequence-specific, as endogenous proteins on the surface of yeast and HeLa cells are not biotinylated. This new methodology expands the scope of biotin ligase labeling to two-color imaging and yeast-based applications.  相似文献   

14.
We describe herein a new method for covalent labeling of proteins using a complementary recognition pair of peptide tag and synthetic molecular probe. The rapid and specific covalent labeling of a tag-fused protein was achieved by the reaction on the tag site with the probe through their selective molecular recognition. The advantages of this method involve the facile functional modification and the high labeling specificity of the tag-fused protein, which are demonstrated in the labeling experiments in various conditions even inside cells.  相似文献   

15.
The ability to modify target "native" (endogenous) proteins selectively in living cells with synthetic molecules should provide powerful tools for chemical biology. To this end, we recently developed a novel protein labeling technique termed ligand-directed tosyl (LDT) chemistry. This method uses labeling reagents in which a protein ligand and a synthetic probe are connected by a tosylate ester group. We previously demonstrated its applicability to the selective chemical labeling of several native proteins in living cells and mice. However, many fundamental features of this chemistry remain to be studied. In this work, we investigated the relationship between the LDT reagent structure and labeling properties by using native FK506-binding protein 12 (FKBP12) as a target protein. In vitro experiments revealed that the length and rigidity of the spacer structure linking the protein ligand and the tosylate group have significant effects on the overall labeling yield and labeling site. In addition to histidine, which we reported previously, tyrosine and glutamate residues were identified as amino acids that are modified by LDT-mediated labeling. Through the screening of various spacer structures, piperazine was found to be optimal for FKBP12 labeling in terms of labeling efficiency and site specificity. Using a piperazine-based LDT reagent containing a photoreactive probe, we successfully demonstrated the labeling and UV-induced covalent cross-linking of FKBP12 and its interacting proteins in vitro and in living cells. This study not only furthers our understanding of the basic reaction properties of LDT chemistry but also extends the applicability of this method to the investigation of biological processes in mammalian cells.  相似文献   

16.
A new chemical method to site‐specifically modify natural proteins without the need for genetic manipulation is described. Our strategy involves the affinity‐labeling‐based attachment of a unique reactive handle at the surface of the target protein, and the subsequent selective transformation of the reactive handle by a bioorthogonal reaction to introduce a variety of functional probes into the protein. To demonstrate this approach, we synthesized labeling reagents that contain: 1) a benzenesulfonamide ligand that directs specifically to bovine carbonic anhydrase II (bCA), 2) an electrophilic epoxide group for protein labeling, 3) an exchangeable hydrazone bond linking the ligand and the epoxide group, and 4) an iodophenyl or acetylene handle. By incubating the labeling reagent with bCA, the reactive handle was covalently attached at the surface of bCA through epoxide ring opening. Either after or before removing the ligand by a hydrazone/oxime‐exhange reaction, which restores the enzymatic activity, the reactive handle incorporated could be derivatized by Suzuki coupling or Huisgen cycloaddition reactions. This method is also applicable to the target‐specific multiple modification in a protein mixture. The availability of various (photo)affinity‐labeling reagents and bioorthogonal reactions should extend the flexibility of this strategy for the site‐selective incorporation of many functional molecules into proteins.  相似文献   

17.
Protein turnover critically influences many biological functions, yet methods have been lacking to assess this parameter in?vivo. Here, we demonstrate how chemical labeling of SNAP-tag fusion proteins can be exploited to measure the half-life of resident intracellular and extracellular proteins in living mice. First, we demonstrate that SNAP-tag substrates have wide?bioavailability in mice and can be used for the specific in?vivo labeling of SNAP-tag fusion proteins. We then apply near-infrared probes to perform noninvasive imaging of in?vivo-labeled tumors. Finally, we use SNAP-mediated chemical pulse-chase labeling to perform measurement of the in?vivo half-life of different extra- and intracellular proteins. These results open broad perspectives for studying protein function in living animals.  相似文献   

18.
To date, various affinity-based protein labeling probes have been developed and applied in biological research to modify endogenous proteins in cell lysates and on the cell surface. However, the reactive groups on the labeling probes are also the cause of probe instability and nonselective labeling in a more complex environment, e. g., intracellular and in vivo. Here, we show that labeling probes composed of a sterically stabilized difluorophenyl pivalate can achieve efficient and selective labeling of endogenous proteins on the cell surface, inside living cells and in vivo. As compared with the existing protein labeling probes, probes with the difluorophenyl pivalate exhibit several advantages, including long-term stability in stock solutions, resistance to enzymatic hydrolysis and can be customized easily with diverse fluorophores and protein ligands. With this probe design, endogenous hypoxia biomarker in living cells and nude mice were successfully labeled and validated by in vivo, ex vivo, and immunohistochemistry imaging.  相似文献   

19.
桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析   总被引:4,自引:0,他引:4  
姚菊明  祝永强  李媛  励丽 《化学学报》2006,64(12):1273-1278
利用基因工程方法把含有短肽RGD的氨基酸序列连接到桑蚕丝素蛋白的结晶序列GAGAGS上, 通过调节DNA的聚合度, 合成了具有[TGRGDSPA(GVPGV)2GG(GAGAGS)3AS]n一级结构、不同分子量大小的桑蚕丝素-RGD融合蛋白, 并且通过在M9培养基中添加[3-13C]Ala的方法进行融合蛋白的稳定同位素标记. 13C CP/MAS NMR结果显示, 融合蛋白中的GAGAGS部分具有与天然桑蚕丝素结晶部分相同的分子结构, 即Silk I处理后为均一的分子结构, 而Silk II处理后为不均一的分子结构, 它包含了三种不同的结构成分. 另一方面, 通过对小鼠成纤维细胞BALB/3T3在不同蛋白材料载体上的粘附和增殖性能的测定结果显示, 融合蛋白对细胞的增殖性能与天然胶原蛋白相近, 但表现出了比胶原蛋白更好的细胞粘附性能. 该研究结果显示, 如果对该桑蚕丝素-RGD融合蛋白进行适当加工, 可能适合于组织工程支架材料的应用.  相似文献   

20.
The objective of this study was to discover previously unknown human sperm surface proteins that may be candidate contraceptive vaccinogens. To this end, methods of concentrating human sperm proteins for microsequencing by mass spectrometry were used, which increased the likelihood of identifying surface proteins. Vectorial labeling, differential extraction and two-dimensional (2-D) gel electrophoresis were employed to identify and isolate proteins accessible at the cell surface. Percoll harvested or swim-up sperm were either solubilized directly or solubilized after surface labeling with sulfo-succinimidyl-6-(biotinamido)hexanoate (sulfo-NHS-LC-biotin). Comparisons were made of proteins extracted with four lysis buffers: (i) Celis buffer containing 9.8 M urea and 2% Igepal CA-630; (ii) 1% Triton X (TX)-100; (iii) 1.7% TX-114 followed by phase partitioning; or (iv) 1 M NaCl. Blots of proteins separated by high-resolution 2-D electrophoresis were probed with avidin and antibodies to known proteins specific for three domains: the sperm surface (SAGA-1), the acrosome (SP-10), and the cytoskeleton (alpha-tubulin). Celis buffer (45 min) extracted proteins from all three major compartments. However, a 20-s extraction in Celis buffer enriched for several proteins and enabled the identification of several novel peptides by mass spectrometry. Mild extraction with TX-100 or 1 M NaCl solubilized mainly membrane and acrosomal proteins, but not cytoskeletal proteins. Comparison of biotinylated proteins extracted by each method showed that the major vectorially labeled proteins solubilized by Celis buffer were also solubilized by TX-100, TX-114, and 1 M NaCl. Extraction with TX-114 followed by phase-partitioning significantly enriched hydrophobic surface proteins and aided resolution and isolation. Eight protein spots microsequenced following all these extraction methods proved to be novel sperm molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号