首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383–398), we model analytically the Hartmann layers present along the walls perpendicular to the magnetic field. This modeling, which yields boundary conditions for the core flow without any meshing of the thin layers, is quite accurate when Hartmann layers are stable. The numerical results are in fairly good agreement with the experimental data. They namely reveal how the heat flux and the fluid flow organization depend on the magnetic field.  相似文献   

2.
A turbulent plane offset jet with small offset ratio   总被引:5,自引:0,他引:5  
 Mean velocities and turbulence characteristics of a turbulent plane offset jet with a small offset ratio of 2.125 have been studied using laser Doppler anemometry (LDA). Static pressure measurements highlight the importance of side plates in enhancing two-dimensionality of the jet. The spatial distributions of turbulence intensities and Reynolds shear stress show a high turbulence recirculating flow region close to the nozzle plate between the jet and the offset plate. The LDA results have been used to examine the capability of three different turbulence models (i.e. k–ɛ, RNG and Reynolds stress) in predicting the velocity field of this jet. While all three models are able to predict qualitatively the recirculation, converging and reattachment regions observed experimentally, the standard k–ɛ turbulence model predicts a reattachment length that best agrees with the experimentally determined value. Received: 11 September 1996/Accepted: 30 May 1997  相似文献   

3.
Three classic MHD problems are revisited assuming hydrodynamic slip condition at the interface between the electrically conducting fluid and the insulating wall: (1) Hartmann flow; (2) fully developed flow in a rectangular duct; and (3) quasi-two-dimensional (Q2D) turbulent flow. The first two problems have been solved analytically. Additionally to the Hartmann number (Ha), a new dimensionless parameter S, the ratio of the slip length to the thickness of the Hartmann layer, has been identified. One of the most important conclusions of the paper is that the duct flows with the slip still exhibit Hartmann layers, whose thickness scales as 1/Ha, while the thickness of the side layers is a function of both Ha and S. In the case of Q2D flows, a new expression for the Hartmann braking time has been derived showing its increase at Ha >> 1 by factor (1+ S). Numerical simulations performed for a flow with the “M-shaped” velocity profile show that in the presence of the slip, a Q2D flow becomes more irregular as vortical structures experience less Joule and viscous dissipation in the Hartmann layers.  相似文献   

4.
郝乐  陈龙  倪明玖 《力学学报》2020,52(6):1645-1654
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.   相似文献   

5.
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.  相似文献   

6.
This study deals with the electromagnetic damping of free-convective flows in cavities such as those used in the crystal growth horizontal Bridgman configuration. The cavities are filled with a dilute electrically conducting alloy and are subjected to a horizontal temperature gradient. The flow is steady and laminar under an external, vertical, transversal and uniform magnetic field. Several cross sections of the cavities were investigated and can either be centro-symmetric or not. The governing equations for such problems are two coupled partial differential equations, for the velocity and the induced magnetic fields, coupled with a third integral equation for mass conservation. A finite element method has been developed, and the numerical results for the variation of the velocity and the induced magnetic field in terms of the Hartmann number show a considerable decrease in convection intensity as the Hartmann number increases. Results also reveal the presence of the well-known Hartmann and parallel layers. For non-centro-symmetric sections, results show the way the flow reorganises into two cells as the Hartmann number increases.  相似文献   

7.
The effect of magnetic field strength and orientation on two types of electromagnetically influenced turbulent flows was studied numerically under the Reynolds averaged Navier–Stokes (RANS) framework. Previous work (Wilson et al., 2014) used an electromagnetically extended linear eddy-viscosity model, whilst the current paper focuses on the performance of a more advanced Reynolds stress transport type model both with and without electromagnetic modifications proposed by Kenjereš et al. (2004). First, a fully-developed 2D channel flow is considered with a magnetic field imposed in either the wall-normal or streamwise direction. Both forms of the RSM gave good agreement with the DNS data for the wall-normal magnetic field across the range of Hartmann numbers with the additional electromagnetic terms providing a small, but noticeable, difference. For the streamwise magnetic field, where electromagnetic influence is only through the turbulence, the electromagnetically extended RSM performed well at moderate Hartmann numbers but returned laminar flow at the highest Hartmann number considered, contrary to the DNS. The RSM results were, however, significantly better than the previous eddy-viscosity model predictions. The second case is that of unsteady 3D Rayleigh–Bénard convection with a magnetic field imposed in either a horizontal or vertical direction. Results revealed that a significant reorganization of the flow structures is predicted to occur. For a vertically oriented magnetic field, the plume structures increase in number and become thinner and elongated along the magnetic field lines, leading to an increase in thermal mixing within the core in agreement with Hanjalić and Kenjereš (2000). With a horizontal magnetic field, the structures become two-dimensional and a striking realignment of the roll cells’ axes with the magnetic field lines occurs. The results demonstrate the capability of the Reynolds stress transport approach in modelling MHD flows that are relevant to industry and offer potential for those wishing to control levels of turbulence, heat transfer or concentration without recourse to mechanical means.  相似文献   

8.
董帅  林殿吉  吕玉坤 《力学学报》2016,48(2):327-335
导电流体在法向外置磁场的作用下,在贴近壁面处会形成哈特曼边界层.哈特曼边界层的稳定性研究对电磁冶金过程和热核聚变反应冷却系统等相关设备的设计和运行都有着十分重要的意义.本文采用非正则模态稳定性分析方法,对两无限大绝缘平行平板内导电流体流动的稳定性进行了研究.通过在时间上迭代求解扰动变量的控制方程组和伴随控制方程组,获得了在磁场作用下初级扰动的增长情况及其空间分布形式,分析了磁场强度对最优扰动增长倍数Gmax、最优展向波数βopt和最优时刻topt的影响,并考察了上下两个哈特曼边界层之间的相互作用.结果表明,最优初始扰动的空间分布形式为沿着流场方向的漩涡,关于法向方向对称或者反对称.当哈特曼数Ha较大时(Ha>10),对称漩涡和反对称漩涡形式的初始扰动增长倍数基本相等;上下两个哈特曼边界层可以认为是彼此独立的,不会相互影响,此时最优扰动增长倍数Gmax与局部雷诺数R的平方成正比,相应的最优展向波数βopt和最优时刻topt均正比于哈特曼数Ha.当哈特曼数Ha较小时(Ha<10),反对称漩涡形式的初始扰动更为不稳定,其增长倍数大于对称漩涡的增长倍数,且上下两个边界层之间存在着一定的相互作用,并对整个流场的稳定性产生一定的影响.   相似文献   

9.
The steady flow in a parallel plate channel rotating with an angular velocity Ω and subjected to a constant transverse magnetic field is analysed. An exact solution of the governing equations is obtained. The solution in the dimensionless form contains two parameters: the Hartmann number, M 2, and K 2 which is the reciprocal of the Ekman number. The effects of these parameters on the velocity and magnetic field distributions are studied. For large values of the parameters, there arise thin boundary layers on the walls of the channel.  相似文献   

10.
In this study, a two‐scale low‐Reynolds number turbulence model is proposed. The Kolmogorov turbulence time scale, based on fluid kinematic viscosity and the dissipation rate of turbulent kinetic energy (ν, ε), is adopted to address the viscous effects and the rapid increasing of dissipation rate in the near‐wall region. As a wall is approached, the turbulence time scale transits smoothly from a turbulent kinetic energy based (k, ε) scale to a (ν, ε) scale. The damping functions of the low‐Reynolds number models can thus be simplified and the near‐wall turbulence characteristics, such as the ε distribution, are correctly reproduced. The proposed two‐scale low‐Reynolds number turbulence model is first examined in detail by predicting a two‐dimensional channel flow, and then it is applied to predict a backward‐facing step flow. Numerical results are compared with the direct numerical simulation (DNS) budgets, experimental data and the model results of Chien, and Lam and Bremhorst respectively. It is proved that the proposed two‐scale model indeed improves the predictions of the turbulent flows considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
We investigate the magnetohydrodynamic flow (MHD) on the upper, half of a non-conducting plane for the case when the flow is driven by the current produced by an electrode placed in the middle of the plane. The applied magnetic field is perpendicular to the plane, the flow is laminar, uniform, steady and incompressible. An analytical solution has been developed for the velocity field and the induced magnetic field by reducing the problem to the solution of a Fredholm's integral equation of the second kind, which has been solved numerically. Infinite integrals occurring in the kernel of the integral equation and in the velocity and magnetic field were approximated for large Hartmann numbers by using Bessel functions. As the Hartmann number M increases, boundary layers are formed near the non-conducting boundaries and a parabolic boundary layer is developed in the interface region. Some graphs are given to show examples of this behaviour.  相似文献   

12.
In this paper, we discuss the flow of a nonviscous and non-heat-conducting gas through a channel of variable cross section under the influence of a transverse magnetic field. For high magnetic Reynolds numbers, the flow is shown to consist of a core and current layers at the electrodes and at the fixed channel walls. The distributions of currents and other parameters in the core and in the current layers are found analytically, in a linear approximation. The Joule dissipation in the current layers may be more intense than that in the core. The longitudinal currents and Joule dissipation increase with increasing Hall parameter in the electrode layers. Zhigulev [1] has shown that magnetic boundary layers may form in the flow of a conducting gas when there is a high magnetic Reynolds number (Rm«1). He illustrated this situation by the shielding of a plasma flow from the magnetic fields produced near a plate which is electrically isolated from the plasma and through which a current is flowing. In an incompressible fluid, the layer thickness is proportional to Rm ?1/2. Morozov and Shubin [2] have offered a linear-approximation treatment of the structure of the electromagnetic near-electrode layers which arise during the flow of a nonviscous plasma with a high Rm and a small “exchange” parameter ξ≈H/Rm, for flow transverse to a magnetic field and near a corrugated wall. They pointed out the possible formation of “dissipationless” near-electrode layers with thicknesses on the order of the Debye or electron Larmor radii, and a “dissipative” layer whose thickness increases along the length of the electrodes and is proportional to (RmcB 2/cT 2)?1/2, where cB and cT are the magnetic and thermal sound velocities. Morozov and Shubin studied the properties of dissipationless and dissipative electromagnetic layers at segmented accelerator electrodes through which a current is passing, for an arbitrary “exchange” parameter, in [2] and [3], respectively. The exchange parameter ξ was found in [4]. Such layers should also exist at solid electrodes and at the nonconducting walls of an accelerator channel. Study of the two-dimensional flow in a channel is significantly simplified when such layers are present.  相似文献   

13.
In this paper, a study of the thermoelastic damping of a gold microbeam resonator in the context of the generalized thermoelasticity with one relaxation time has been improved. An explicit formula of thermoelastic damping has been derived in general form includes the speed of the beam in the direction of its principal axis and without any external body force. Influences of the speed, the rotation, and the magnetic field have been studied. We discussed the effect of the speed of the beam, the rotation, and the magnetic field on the thermoelastic damping (Q-factor). The moving and the rotation of the microbeam have significant effects on the thermoelastic damping and the energy dissipation. The external magnetic field with tiny induced magnetic field acts on the microbeam has a significant effect on the thermoelastic damping and the energy dissipation. The energy dissipation of the microbeam decreases when the speed of the microbeam, the rotation angular speed, and the external magnetic field acts on the microbeam decrease.  相似文献   

14.
Formation of sharp vorticity gradients in two-dimensional (2D) hydrodynamic turbulence and their influence on the turbulent spectra are considered. The analog of the vortex line representation as a transformation to the curvilinear system of coordinates moving together with the di-vorticity lines is developed and compressibility of this mapping appears as the main reason for the formation of the sharp vorticity gradients at high Reynolds numbers. In the case of strong anisotropy the sharp vorticity gradients can generate spectra which fall off as k ?3 at large k, which appear to take the same form as the Kraichnan spectrum for the enstrophy cascade. For turbulence with weak anisotropy the k dependence of the spectrum due to the sharp gradients coincides with the Saffman spectrum: E(k) ~ k ?4. Numerical investigations of decaying turbulence reveal exponential growth of di-vorticity with a spatial distributed along straight lines. Thus, indicating strong anisotropy and accordingly the spectrum is close to the k ?3-spectrum.  相似文献   

15.
An orthogonal-cuvilinear-mesh-based finite volume calculation method has been applied to the problem of fully developed turbulent flow in the tri-cusped cornered duct formed when parallel circular rods touch in triangular array. Algebraic stress relations combined with the k-? turbulence model are used for calculation of the required stresses. A single circulation of turbulence-driven cross-plane secondary flow from the core into the duct corner has been predicted in a one-sixth symmetry region of the duct and the convective transport effects of this flow are seen to have much influence on local mean flow distributions. The turbulence field predicted by the k-? model showed significant damping in the cusped corner region where turbulent viscosities approached the laminar value. Satisfactory agreement was obtained with the limited local and overall mean flow measurements available.  相似文献   

16.
In this paper, the effects of a magnetic field on natural convection flow in filled long enclosures with Cu/water nanofluid have been analyzed by lattice Boltzmann method. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid, Ra = 103–105, the volumetric fraction of nanoparticles between 0 and 6 %, the aspect ratio of the enclosure between A = 0.5 and 2. The Hartmann number has been varied from Ha = 0 to 90 with interval 30 while the magnetic field is considered at inclination angles of θ = 0°, 30°, 60° and 90°. Results show that the heat transfer decreases by the increment of Hartmann number for various Rayleigh numbers and the aspect ratios. Heat transfer decreases with the growth of the aspect ratio but this growth causes the effect of the nanoparticles to increase. The magnetic field augments the effect of the nanoparticles at high Rayleigh numbers (Ra = 105). The effect of the nanoparticles rises for high Hartmann numbers when the aspect ratio increases. The rise in the magnetic field inclination improves heat transfer at aspect ratio of A = 0.5.  相似文献   

17.
A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged equations for the mean motion have been determined from algebraic expressions, derived by neglecting the convection and diffusion terms in the differential transport equations for these quantities, which relate the turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the temperature covariance, T2. Differential transport equations have been used to determine these latter quantities. The governing equations have been solved using fully implicit finite difference schemes. The turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling flows for weak and moderate swirl. The behaviour of a turbulent buoyant swirling jet has been found to depend solely on exit swirl and Froude numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a swirling jet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been found to be in satisfactory agreement with the available experimental data and in good qualitative agreement with other predicted results.  相似文献   

18.
The purpose of this study is to investigate compressibility effects on the turbulence in homogeneous shear flow. We find that the growth of the turbulent kinetic energy decreases with increasing Mach number—a phenomenon which is similar to the reduction of turbulent velocity intensities observed in experiments on supersonic free shear layers. An examination of the turbulent energy budget shows that both the compressible dissipation and the pressure-dilatation contribute to the decrease in the growth of kinetic energy. The pressure-dilatation is predominantly negative in homogeneous shear flow, in contrast to its predominantly positive behavior in isotropic turbulence. The different signs of the pressure-dilatation are explained by theoretical consideration of the equations for the pressure variance and density variance. We previously obtained the following results for isotropic turbulence: first, the normalized compressible dissipation is of O(M t 2 ), and, second, there is approximate equipartition between the kinetic and potential energies associated with the fluctuating compressible mode. Both these results have now been substantiated in the case of homogeneous shear. The dilatation field is significantly more skewed and intermittent than the vorticity field. Strong compressions seem to be more likely than strong expansions.Dedicated to Professor J.L. Lumley on the occasion of his 60th birthday.This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665, U.S.A.  相似文献   

19.
The paper reports on the application of the Time-dependent Reynolds-Averaged Navier–Stokes (T-RANS) approach to analysing the effects of magnetic force and bottom-wall configuration on the reorganisation of a large coherent structure and its role in the transport processes in Rayleigh–Bénard convection. The large-scale deterministic motion is fully resolved in time and space, whereas the unresolved stochastic motion is modelled by a `subscale' model for which the conventional algebraic stress/flux expressions were used, closed with the low-Re number (k)-(ε)-(θ2) three-equation model. The applied method reproduces long-term averaged mean flow properties, turbulence second moments, and all major features of the coherent roll/cell structure in classic Rayleigh–Bénard convection in excellent agreement with the available DNS and experimental results. Application of the T-RANS approach to Rayleigh–Bénard convection with wavy bottom walls and a superimposed magnetic field yielded the expected effects on there organisation of the eddy structure and consequent modifications of the mean and turbulence parameters and wall heat transfer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three dimensional flows with 2D PIV, there is inherent measurement error due to out-of-plane motion. Errors in the measured velocity field propagate to turbulence statistics. Since this can distort the overall flow characteristics, it is important to understand the effect of this out-of-plane error. In this study, the effect of out-of-plane motion on turbulence statistics is quantified. Using forced isotropic turbulence direct numerical simulation (DNS) flow field data provided by the Johns Hopkins turbulence database (JHTDB), synthetic image tests are performed. Turbulence statistics such as turbulence kinetic energy, dissipation rate, Taylor microscale, Kolmogorov scale, and velocity correlations are calculated. Various test cases were simulated while controlling three main parameters which affect the out-of-plane motion: PIV interrogation window size, camera inter-frame time, and laser sheet thickness. The amount of out-of-plane motion was first quantified, and then the error variation according to these parameters was examined. This information can be useful when examining fully three dimensional flows such as homogeneous and isotropic turbulence via 2D PIV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号