首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of the present study was to employ suitable adsorbent with free flowing characteristics for improving the stability and physical properties of solid lipid nanoparticles (SLN) for oral administration. Stearic acid based nanoparticles of carvedilol phosphate were fabricated by solvent emulsification evaporation technique in sodium taurocholate solution prepared in pH 7.2 buffers (I—KH2PO4/NaOH or II—NaH2PO4/Na2HPO4) with 1% polyvinyl alcohol. Nanoparticles were then adsorbed by passing the nanodispersion through a Neusilin US2 (adsorbent) column. Interestingly, scanning electron microscopy revealed round deformed and even collapsed nanoparticles in Buffer-I and discrete spherical to ellipsoidal nanoparticles in Buffer-II which indicates the inability of nanoemulsion to crystallize and form SLN in Buffer-I. The successful formation of SLN in Buffer-II was confirmed by differential scanning calorimetry and X-ray diffraction. The retention of SLN from the nanodispersion by adsorption on the adsorbent imparted good flow property and resulted in a marked stability improvement of the formulation in terms of drug retention efficiency and release profile as compared to the simple nanosuspension. In conclusion, the adsorbent technology would be instrumental in imparting additional features to the existing conventional colloidal system for pharmaceutical application which would ease the process of capsule filling at industrial scale, simplify the handling of formulations by patients and can significantly improve the shelf life of the product for a longer period of time as compared to liquid formulations.  相似文献   

2.
The purpose of this study was to improve the stability of dithranol, an effective drug for topical treatment of psoriasis. The influence of several formulations (microemulsions, O/W emulsion, gel emulsion, and gel) on the photodegradation kinetics of dithranol was investigated. The photodegradation rate was found to be related with the initial drug concentration and the nature of the vehicle. Solid lipid nanoparticles (SLN) were prepared by solvent injection technique to investigate whether the inclusion in the lipid matrix could increase the stability of the drug. Physicochemical characterization of the particles by optical microscopy, photon correlation spectroscopy (PCS) and differential scanning calorimetry (DSC) revealed that solvent injection is a suitable approach for dithranol-loaded SLN preparation. The obtained particle sizes were between 230 and 270 nm; up to 92% of drug was entrapped in the SLN. The photodegradation kinetic constants (kc) of dithranol in SLN were related with the medium in which the particles were dispersed. The stability over time of dithranol was also investigated storing the samples at 25°C and the results showed that the drug inclusion in SLN dispersed in gel emulsion reduced its rate of degradation.  相似文献   

3.
Enrofloxacin-loaded solid lipid nanoparticles (SLN) were prepared using fatty acids (tetradecanoic acid, palmitic acid, stearic acid) as lipid matrix by hot homogenization and ultrasonication method. The effect of fatty acids on the characteristics and pharmacokinetics of the SLN were investigated. The results showed that the encapsulation efficiency and loading capacity of nanoparticles varied with fatty acids in the order of stearic acid>palmitic acid>tetradecanoic acid. Furthermore, stearic acid-SLN had larger particle size, bigger polydispersity index (PDI) and higher zeta potential compared with the other two fatty acid formulated SLN. The SLN showed sustained releases in vitro and the released enrofloxacin had the same antibacterial activity as that of the native enrofloxacin. Although in vitro release exhibited similar patterns, within 24 h the releasing rates of the three formulations were significantly different (tetradecanoic acid-SLN>palmitic acid-SLN>stearic acid-SLN). Pharmacokinetic study after a single dose of intramuscular administration to mice demonstrated that tetradecanoic acid-SLN, palmitic acid-SLN, and stearic acid-SLN increased the bioavailability by 6.79, 3.56 and 2.39 folds, and extended the mean residence time (MRT) of the drug from 10.60 h to 180.36, 46.26 and 19.09 h, respectively. These results suggest that the enrofloxacin-fatty acid SLN are promising formulations for sustained release while fatty acids had significant influences on the characteristics and performances of the SLN.  相似文献   

4.
通过脂质和乳化剂筛选实验得到适合于硫辛酸(ALA)负载的脂质基体和乳化剂,在此基础上分别在55℃和65℃下用高压均质法(HPH)制备了硫辛酸脂质纳米粒(ALA-NLC)。通过高效液相色谱(HPLC)、动态光散射(DLS)、原子力显微镜(AFM)、微差示扫描量热(micro-DSC)研究制备温度和保存时间对ALA-NLC性质如ALA的负载量、粒径、稳定性及形貌的影响。结果表明,制备温度和保存时间对粒径、zeta电位及ALA负载量均有较大影响。Micro-DSC结果表明,55℃和65℃下制备的ALA-NLC都可能存在过冷态现象,但是55℃制备的样品更稳定,所得配方在ALA膳食补给上具有潜在的应用价值。  相似文献   

5.
Solid lipid nanoparticles (SLN) without drug and SLN loaded with chloroaluminum phthalocyanine (AlClPc) were prepared by solvent diffusion method in aqueous system and characterized by thermal analyses and X-ray diffraction (XRD) in this study. Determination of particle size, zeta potential (ZP), and encapsulation efficiency were also evaluated. SLN containing AlClPc of nanometer size with high encapsulation efficiency and ZP were obtained. The results indicated that the size of SLN loaded with AlClPc is larger than that of the inert particle, but ZP is not changed significantly with incorporation of the drug. In differential scanning calorimetry (DSC) curves, it was observed that the melting point of stearic acid (SA) isolated and in SLN occurred at 55 and 64 °C, respectively, suggesting the presence of different polymorphs. DSC also shows that the crystallinity state of SLN was much less than that of SA isolated. The incorporation of drug in SLN may have been favored by this lower crystallinity degree of the samples. XRD techniques corroborated with the thermal analytic techniques, suggesting the polymorphic modifications of stearic acid.  相似文献   

6.
The development of safe and effective nucleic acid delivery systems remains a challenge, with solid lipid nanoparticle (SLN)-based vectors as one of the most studied systems. In this work, different SLNs were developed, by combination of cationic and ionizable lipids, for delivery of mRNA and pDNA. The influence of formulation factors on transfection efficacy, protein expression and intracellular disposition of the nucleic acid was evaluated in human retinal pigment epithelial cells (ARPE-19) and human embryonic kidney cells (HEK-293). A long-term stability study of the vectors was also performed. The mRNA formulations induced a higher percentage of transfected cells than those containing pDNA, mainly in ARPE-19 cells; however, the pDNA formulations induced a greater protein production per cell in this cell line. Protein production was conditioned by energy-dependent or independent entry mechanisms, depending on the cell line, SLN composition and kind of nucleic acid delivered. Vectors containing 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) as unique cationic lipid showed better stability after seven months, which improved with the addition of a polysaccharide to the vectors. Transfection efficacy and long-term stability of mRNA vectors were more influenced by formulation-related factors than those containing pDNA; in particular, the SLNs containing only DOTAP were the most promising formulations for nucleic acid delivery.  相似文献   

7.
Solid-lipid nanoparticles (SLNs) are an interesting nanoparticulate delivery system. The present work was carried out with the aim to develop a prolonged release solid-lipid nanoparticulate system for the drug using aceclofenac. Aceclofenac-loaded solid-lipid nanoparticles (ACSLNs) was prepared by hot high pressure homogenization technique. Tripalmitin was used as the lipid core. Surfactants (Poloxamer 188, Tween 80, and soya lecithin) and co-surfactant (sodium tauro glycholate) were used in the formulations. The prepared ACSLN formulations were characterized for encapsulation efficiency (EE), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and x-ray diffraction (XRD). From these studies, mean particle diameter of the formulation prepared with combination of surfactants (Poloxmer 188 and Tween 80) was about 200 nm with spherical morphology and amorphous nature. Higher EE was obtained with SLNs prepared using combination of soya lecithin and poloxmer 188. The organization and distribution of the ingredients in the nanoparticulate system were studied by differential scanning calorimetry (DSC) and the results showed that the drug is incorporated into the solid matrix. The prepared formulations demonstrated favorable in vitro prolonged release characteristics. Experimental in vitro release data were substituted in available mathematical models to establish the release kinetics of ACSLNs and it was found to follow first-order kinetics and Higuchi diffusion mechanism. Our results suggest that these SLN formulations could constitute a promising approach for the drug delivery of aceclofenac.  相似文献   

8.
Water-in-water (W/W) emulsions are colloidal dispersions of an aqueous solution into another aqueous phase. Such dispersions can be formed in mixtures of at least two hydrophilic macromolecules, which are thermodynamically incompatible in solution, generating two immiscible aqueous phases. W/W emulsions are much less known than conventional oil-in-water or water-in-oil emulsions, despite the fact that phase separation in aqueous mixtures is highly common. The thermodynamics and the phase behavior of segregative phase separation in mixtures of hydrophilic polymers have focused a great attention, with many excellent scientific reports in the literature. However, the kinetic stability of water-in-water emulsions is generally difficult to control, since amphiphilic molecules do not adsorb on water-water interfaces. Consequently, surfactants are not good stabilizers for W/W emulsions, and until recently, only a limited number of scientific studies have dealt with the formation and stabilization of emulsions in aqueous two-phase systems. Recent advances and successful results in the stabilization of these emulsions, by alternative mechanisms, have triggered a renewed interest. Nowadays, fast progress is being made in formation and stabilization methods, and new knowledge is rapidly acquired, opening a wide range of novel possibilities for practical applications. Interestingly, highly stable water-in-water emulsions can be formulated using fully biocompatible and edible components, and consequently, these emulsions can be used in food formulations, among many other interesting applications. This review describes the general background of research in the field, and focuses on recent scientific advances, including phase behavior, formation, stability and kinetic aspects, as well as applications such as formation of microgels, encapsulation and drug delivery.  相似文献   

9.
This study was performed to develop solid lipid nanoparticles of water soluble drug ciprofloxacin HCl using quick solvent diffusion evaporation technique (ouzo effect). A statistical central composite rotatable design was used to study the effect of independent variables. In the subsequent step, optimized SLN were further compared with nanostructured lipid carriers and nanoemulsion for particle size, zeta potential, drug entrapment, drug release, and stability. Comparative study revealed that the drug encapsulation efficiencies were enhanced by adding the Capmul MCM C8 into the solid lipid nanoparticles. The in vitro drug release study of all three formulations showed rapid release for nanoemulsion while controlled release for SLN. Stability study of all the formulation proved that nanostructured lipid carrier and SLN could prevent the drug expulsion during the storage period. Results of the study suggested that the SLN and nanostructured lipid carriers produced by the principle of ouzo effect could potentially be exploited for better drug entrapment efficiency and controlled drug release of water soluble actives.  相似文献   

10.
Twelve oil-in-water nano-emulsions were prepared using a melt high-pressure homogenisation process (HPH) at 300, 800 or 1200 bar. The resulting emulsions containing 20 wt% palm oil in the absence or presence of α-tocopherol were stabilised by whey proteins alone or in mixture with lecithin. Lipid nanoparticles in these emulsions were characterized for their particle size, surface charge and protein surface concentration (PSC) in relation to their stability against aggregation and coalescence, and to their ability for encapsulation and protection of α-tocopherol against chemical degradation. Increasing HPH values were accompanied by the formation of lipid nanoparticles with decreasing size and PSC, but increasing long-term stability against aggregation and coalescence in parallel with an increase in α-tocopherol degradation (up to 15 wt% for 1200 bar). Presence of α-tocopherol, led to increasing (or decreasing) PSC values with increasing (or decreasing) HPH values for lipid nanoparticles stabilised by proteins alone (or in mixture with lecithins). In addition to these structural properties, the ability for α-tocopherol long-term stability of nanoparticles in emulsions was shown to differ more depending on their adsorbed materials (protein alone, or in mixture with lecithin) than on their particle size values. After 2 months storage, α-tocopherol in emulsions prepared at 300, 800 or 1200 bar was protected against chemical degradation at 79, 77, 67 wt%, respectively, when whey proteins were used alone, instead of 66, 63, 48 wt% when proteins were used in mixture with lecithins. These results indicated the dominant role of adsorbed proteins on the protection of vitamin models by nanoemulsions. They are of a great technological importance for production of lipid nanoparticles presenting a high volume-to-diameter ratio values and consequently high exchange surfaces between the matrix carrier and water and oxygen environmental factors.  相似文献   

11.
Insulin-loaded solid lipid nanoparticles (SLN) were prepared according to a solvent dilution method from O/W emulsions using isovaleric acid as organic phase. Insulin was derivatized with fluorescein isothyocianate (FITC) obtaining a fluorescent marker to be used in in vivo experiments. FITC-insulin and native insulin–loaded SLN were quite similar with regard to their mean sizes and encapsulation efficiency. SLN intestinal uptake was then investigated administering FITC-insulin loaded SLN on healthy male Wistar rats. Significant drug accumulation within intestinal lymphatic system was recovered, but the immune system seems to play an important role in SLN degradation: further studies are necessary to improve the results on blood glucose level.  相似文献   

12.
This study focuses on the physicochemical characterization of lipid materials useful for the production of the so-called solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The chosen lipids were Dynasan®114 (glyceril trimyristate) and Dynasan®118 (glyceril tristearate) as solid lipids (SL), melting temperature above 80 °C, and Miglyol®812 (caprylic/capric triglyceride) and Miglyol®840 (propylene glycol dicaprylate/dicaprate) as liquid lipids (LL), crystallizing below ?15 °C. Raw lipids (pure or SL:LL mixtures) were analyzed by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and Polarized Light Microscopy (PLM), before and after tempering at 80 °C for 1 h. The selected SL:LL combination was 70% (Dynasan®114 and 118) and 30% (Miglyol®812 and 840) for the production of SLN and NLC by high-pressure homogenization (HPH), respectively. Particles with a mean size of 200 nm (polydispersity index <0.329) and zeta potential of ?15 mV were obtained, and their long-term stability was confirmed for 3 months of storage at 7 °C.  相似文献   

13.
Nanostructured lipid carriers (NLC) made from mixtures of solid and spatially incompatible liquid lipids were prepared by melt-emulsification. Their drug loading capacity and releasing properties of progesterone were compared with those of solid lipid nanoparticles (SLN), and the NLC prepared by solvent diffusion method. Monostearin (MS) and stearic acid (SA) were used as solid lipid, whilst the oleic acid (OA) was used as liquid lipid. Properties of carriers such as the particle size and its distribution, drug loading, drug encapsulation efficiency and drug release behavior were investigated. As a result, the drug encapsulation efficiencies were improved by adding the liquid lipid into the solid lipid of nanoparticles. The drug release behavior could be adjusted by the addition of liquid lipid, and the NLC with higher OA content showed the faster rate of drug releasing. NLC had higher efficiency of encapsulation and slower rate of drug release than those of NLC prepared by solvent diffusion method. On the other hand, the NLC with higher drug loading was obtained, though the drug encapsulation efficiency was decreased slightly due to the increase of the amount of drug. The NLC modified with polyethylene glycol (PEG) was also prepared by using polyethylene glycol monostearate (PEG-SA). It was observed that the incorporation of PEG-SA reduced the drug encapsulation efficiency, but increased the rate of drug release. A sample with almost complete drug release in 24 h was obtained by modifying with 1.30 mol% PEG-SA. It indicated that the modified NLC was a potential drug delivery system for oral administration.  相似文献   

14.
Nanostructured lipid carriers (NLC) made from mixtures of solid and spatially incompatible liquid lipids were prepared by melt-emulsification. Their drug loading capacity and releasing properties of progesterone were compared with those of solid lipid nanoparticles (SLN), and the NLC prepared by solvent diffusion method. Monostearin (MS) and stearic acid (SA) were used as solid lipid, whilst the oleic acid (OA) was used as liquid lipid. Properties of carriers such as the particle size and its distribution, drug loading, drug encapsulation efficiency and drug release behavior were investigated. As a result, the drug encapsulation efficiencies were improved by adding the liquid lipid into the solid lipid of nanoparticles. The drug release behavior could be adjusted by the addition of liquid lipid, and the NLC with higher OA content showed the faster rate of drug releasing. NLC had higher efficiency of encapsulation and slower rate of drug release than those of NLC prepared by solvent diffusion method. On the other hand, the NLC with higher drug loading was obtained, though the drug encapsulation efficiency was decreased slightly due to the increase of the amount of drug. The NLC modified with polyethylene glycol (PEG) was also prepared by using polyethylene glycol monostearate (PEG-SA). It was observed that the incorporation of PEG-SA reduced the drug encapsulation efficiency, but increased the rate of drug release. A sample with almost complete drug release in 24 h was obtained by modifying with 1.30 mol% PEG-SA. It indicated that the modified NLC was a potential drug delivery system for oral administration.  相似文献   

15.
Researchers work on different optimization methods to come up with preparation methods, which show the desired or targeted outcomes. Moreover, nowadays, research is more focused on developing formulations which contain biodegradable polymers. The objective of the present systematic study was to achieve the abovementioned goals by using a cationic ammonio methacrylate copolymer (Eudragit® RS100). A Double-emulsion solvent evaporation technique was used. This methodology was chosen because the particles formed by this method allow encapsulation of both hydrophilic and hydrophobic active molecules. It also has applications in diverse fields such as drug delivery, food, cosmetics, and pharmaceutical industries.

The aim of this research work was to investigate the influence of various process control parameters, such as stabilizer chemical nature and amount, ultra Turrax® stirring speed and time, the morphology, size, and size distribution of the final dispersions. Then, the prepared particles were characterized using a Scanning Electron Microscope (SEM) and a Laser Diffraction Particle Size Analyzer. This study helped us to know which parameters have a drastic effect on the colloidal properties of the particles.  相似文献   

16.
Waterborne polyurethane (WBU) dispersions synthesized from poly(propylene glycol) (PPG), dimethylolpropionic acid (DMPA), and isophorone diisocyanate (IPDI) with catalysts of different selectivity were prepared via by the conventional prepolymer isocyanate process. Two types of chain extenders were used, ethylene glycol (EG) and propylene glycol (PG), producing polyurethanes. The dispersions were neutralized by the addition of triethylamine. The thermal stability of the materials, obtained as cast films prepared from aqueous dispersions was evaluated by thermogravimetry (TG). It was observed that initial degradation temperatures were above 140 °C, with two-step degradation profiles. The use of a more selective catalyst in the formulations led to materials with higher thermal stability. DTG curves exhibited stages not perceptible in the curves of weight loss, which were mainly influenced by the differences in the formulations. Thermal decomposition of the obtained polyurethanes was followed by TG coupled with FTIR spectroscopy.  相似文献   

17.
As the physicochemical characteristics of solid lipid nanoparticles (SLNs) play a critical role in their success, it is important to understand how the materials and process used in their preparation affect these properties. In this study, two stearyl alcohol-based formulations were prepared using nanotemplate engineering technology and characterized. Both formulations were of a small particle size (<100 nm), ellipsoidal shape, and low polydispersity. (1)H NMR spectroscopy confirmed that the SLNs have the expected solid core structure and PEGylated surface. Analysis of the bulk materials indicated that a number of complex interactions are present among the SLN components, including a eutectic between stearyl alcohol and Brij 78. The decreased crystallinity resulting from these interactions may allow for enhanced drug loading. Physiological stability was identified and confirmed as a potential problem due to the low melting point of the eutectic. However, it is expected that with appropriate formulation modifications nanotemplate engineered SLNs will possess the properties necessary for a successful drug delivery system.  相似文献   

18.
In the present study eugenol loaded solid lipid nanoparticles (SLN) was prepared and characterized for particle size, polydispersity index, zeta potential, encapsulation efficiency, in vitro release and in vivo antifungal activity. Effect of addition of liquid lipid (caprylic triglyceride) to solid lipid (stearic acid) on crystallinity of lipid matrix of SLN was determined by using Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. Transmission electron microscopy (TEM) was carried out to determine the morphology of SLN. In vivo antifungal activity of eugenol loaded lipid nanoparticles was evaluated by using a model of oral candidiasis in immunosuppressed rats. Particle size results showed that d(90) of SLN(1) (single lipid matrix) and SLN(2) (binary lipid matrix) was 332±14.2 nm and 87.8±3.8 nm, respectively. Polydispersity index was found to be in the range of 0.27-0.4 which indicate moderate size distribution. Encapsulation efficiency of SLN(2) (98.52%) was found to be more than that of SLN(1) (91.80%) at same lipid concentration (2%, w/v). Increasing of the solid lipid concentration from 2% (w/v) to 4% (w/v) resulted in increase in encapsulation efficiency and the particle size. SLN(2) shows faster release of eugenol than that of SLN(1) due to smaller size and presence of liquid lipid which provide less barriers to the diffusion of drug from matrix. TEM study reveals the spherical shape of SLN. FT-IR, DSC and XRD results indicate less crystallinity of SLN(2) than that of SLN(1). In vivo studies show no significant difference in log cfu value of all the groups at 0 day. At 8th day, log cfu value of group treated with saline (control), standard antifungal agent, eugenol solution, SLN(1) and SLN(2) was found to be 3.89±.032, 2.69, 3.39±.088, 3.19±.028 and 3.08±0.124, respectively. The in vivo study results indicate improvement in the antifungal activity of eugenol when administrated in the form of SLN.  相似文献   

19.
Nanoparticles are useful for the delivery of small molecule therapeutics, increasing their solubility, in vivo residence time, and stability. Here, we used organocatalytic ring opening polymerization to produce amphiphilic block copolymers for the formation of nanoparticle drug carriers with enhanced stability, cargo encapsulation, and sustained delivery. These polymers comprised blocks of poly(ethylene glycol) (PEG), poly(valerolactone) (PVL), and poly(lactide) (PLA). Four particle chemistries were examined: (a) PEG‐PLA, (b) PEG‐PVL, (c) a physical mixture of PEG–PLA and PEG–PVL, and (d) PEG–PVL–PLA tri‐block copolymers. Nanoparticle stability was assessed at room temperature (20 °C; pH = 7), physiological temperature (37 °C; pH = 7), in acidic media (37 °C; pH = 2), and with a digestive enzyme (lipase; 37 °C; pH = 7.4). PVL‐based nanoparticles demonstrated the highest level of stability at room temperature, 37 °C and acidic conditions, but were rapidly degraded by lipase. Moreover, PVL‐based nanoparticles demonstrated good cargo encapsulation, but rapid release. In contrast, PLA‐based nanoparticles demonstrated poor stability and encapsulation, but sustained release. The PEG–PVL–PLA nanoparticles exhibited the best combination of stability, encapsulation, and release properties. Our results demonstrate the ability to tune nanoparticle properties by modifying the polymeric architecture and composition. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1322–1332  相似文献   

20.
Most proteins are hydrophilic and poorly encapsulated into the hydrophobic matrix of solid lipid nanoparticles (SLN). To solve this problem, poly (lactic-co-glycolic acid) (PLGA) was utilized as a lipophilic polymeric emulsifier to prepare hydrophilic protein-loaded SLN by w/o/w double emulsion and solvent evaporation techniques. Hydrogenated castor oil (HCO) was used as a lipid matrix and bovine serum albumin (BSA), lysozyme and insulin were used as model proteins to investigate the effect of PLGA on the formulation of the SLN. The results showed that PLGA was essential for the primary w/o emulsification. In addition, the stability of the w/o emulsion, the encapsulation efficiency and loading capacity of the nanoparticles were enhanced with the increase of PLGA concentration. Furthermore, increasing PLGA concentration decreased zeta potential significantly but had no influence on particle size of the SLN. In vitro release study showed that PLGA significantly affected the initial burst release, i.e. the higher the content of PLGA, the lower the burst release. The released proteins maintained their integrity and bioactivity as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and biological assay. These results demonstrated that PLGA was an effective emulsifier for the preparation of hydrophilic protein-loaded SLN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号