首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The present article reports the spectroscopic investigations on non-covalent interaction of fullerenes C(60) and C(70) with a macrocyclic receptor molecule, namely, 1,3,5,7-tetrahomo-p-tert-butylcalix[8]arene (1) in toluene. Jobs method of continuous variation reveals 1:1 stoichiometry for the fullerene complexes of 1. The most fascinating feature of the present study is that 1 binds selectively C(60) compared to C(70) as obtained from binding constant (K) data of C(60)-1 (K(C60-1)) and C(70)-1 (K(C70-1)) complexes which are enumerated to be 265,000 dm(3) mol(-1) and 63,43 dm(3) mol(-1), respectively, and selectivity in binding (K(C60-1)/K(C70-1)) is estimated to be 4.18 as obtained from UV-Vis study. Steady state fluorescence studies reveal quenching of fluorescence of 1 in presence of fullerenes and the K value of the C(60)-1 and C(70)-1 complexes are estimated to be 80,760 and 68,780 dm(3) mol(-1), respectively, with selectivity in binding (K(C60-1)/K(C70-1)) ~1.18. (1)H NMR analysis provides very good support in favor of strong binding between C(60) and 1. The high value of K value for C(60)-1 complex indicates that 1 forms an inclusion complex with C(60).  相似文献   

2.
The present paper reports the synthesis of a designed bisporphyrin (1), and its supramolecular complexes with C60, C70 and their derivatives, namely, tert-butyl-(1,2-methanofullerene)-61-carboxylate (2) and [6,6]-phenyl C70 butyric acid methyl ester (3) in toluene medium. C60, C70 and their derivatives undergo ground state non-covalent interaction with 1 is evidenced from absorption spectrophotometric study in which it is observed that the intensity of the Soret absorption band of 1 decreases considerably in presence of C60, C70 and their derivatives. Steady state fluorescence studies reveal efficient quenching of fluorescence of 1 in presence of fullerenes. The binding constant (K) values of the fullerene/1 complexes follows the trend: 2/1相似文献   

3.
The present paper reports the photophysical investigations of a designed bisporphyrin (1), and its supramolecular complexes with C60 and C70 in toluene medium. UV-vis studies reveal appreciable ground state interaction between fullerenes and 1. The stoichiometry of the fullerene complexes of 1 is found to be 1:1. Steady state fluorescence studies elicit quenching of fluorescence of 1 in the presence of fullerenes. The binding constants of the C60/1 and C70/1 complexes are estimated to be 3760 and 31,222.5 dm3 mol(-1), respectively. Time resolved emission studies establish relatively long-lived charge separated state for the C70/1 complex. Molecular mechanics calculations in vacuo evoke the stereoscopic structures of the fullerene/1 complexes and interpret the stability difference between C60 and C70 complexes of 1 in terms of heat of formation values.  相似文献   

4.
The photo-physical aspects of non-covalently linked assemblies of a series of fullerenes, namely, C60, C70, tert-butyl-(1,2-methanofullerene)-61-carboxylate (1) and [6,6]-phenyl C70 butyric acid methyl ester (2) with a designed zinc phthalocyanine (ZnPc), viz., zinc-1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine (3) in toluene medium are studied employing absorption spectrophotometric, steady state and time resolved fluorescence spectroscopic measurements. Of central interest in these investigations is the preferential binding of various fullerenes with ZnPc in toluene. The ground state interaction between fullerenes and 3 is first evidenced from UV-Vis measurements. Steady state fluorescence experiment reveals efficient quenching of the excited singlet state of 3 in presence of both underivatized and derivatized fullerenes. K values for the complexes of C60, C70, 1 and 2 with 3 are determined to be 6500, 22,230, 47,800 and 54,770 dm3 mol(-1), respectively. The magnitude of K suggests that 3 preferentially binds C70 and derivatized C70 in comparison to C60 and 1. Time resolved emission measurements establish that C(70)-3 and 2-3 complexes are stabilized much more in comparison to C(60)-3 and 1-3 systems in terms of charge separation process. Semi empirical calculations employing third parametric method substantiate the strong binding of C70 and its derivative with 3 in terms of heat of formation values of the respective complexes, and at the same time, determine the orientation of bound guest (here fullerenes) with the molecular plane of 3.  相似文献   

5.
The host-guest interaction of zinc(II) 5,10,15,20-tetrahexylporphyrin (Zn-THP) and its free base (H2-THP) with fullerenes (C60 and C70) has been studied in toluene medium. Binding constants (K) for H2- and Zn-THP complexes of fullerenes were determined by UV-vis, fluorescence and NMR spectroscopic techniques. Large K values of C70/THP complexes (KC70 ) were obtained in the range of 1.4-2.5 x 10(4)M(-1), while those of C60/THP complexes (KC60) were smaller (1.0-3.2 x10(3)M(-1)). These results show that the KC70 is about 10 times as large as KC60 in both THPs (KC70/KC60 = 10). Enthalpies of formation (DeltaHf degrees) for various fullerene/THP complexes were estimated by ab initio calculations; DeltaHf degrees for C60/H2-THP, C70/H2-THP, C60/Zn-THP and C70/Zn-THP complexes are 5.82, 2.80, 2.31 and 1.54 kcal mol(-1), respectively. The trends in DeltaHf degrees support the experimental results of selective complexation of THPs towards C70 over C60 and fullerenes towards Zn-THP over H2-THP.  相似文献   

6.
Dynamic covalent chemistry (DCC) provides an intriguing and highly efficient approach for building molecules that are usually thermodynamically favored. However, the DCC methods that are efficient enough to construct large, complex molecules, particularly those with three-dimensional (3-D) architectures, are still very limited. Here, for the first time, we have successfully utilized alkyne metathesis, a highly efficient DCC approach, to construct the novel 3-D rectangular prismatic molecular cage COP-5 in one step from a readily accessible porphyrin-based precursor. COP-5 consists of rigid, aromatic porphyrin and carbazole moieties as well as linear ethynylene linkers, rendering its shape-persistent nature. Interestingly, COP-5 serves as an excellent receptor for fullerenes. It forms 1:1 complexes with C(60) and C(70) with association constants of 1.4 × 10(5) M(-1) (C(60)) and 1.5 × 10(8) M(-1) (C(70)) in toluene. This represents one of the highest binding affinities reported so far for purely organic fullerene receptors. COP-5 shows an unprecedented high selectivity in binding C(70) over C(60) (K(C70)/K(C60) > 1000). Moreover, the binding between the cage and fullerene is fully reversible under the acid-base stimuli, thus allowing successful separation of C(70) from a C(60)-enriched fullerene mixture (C(60)/C(70), 10/1 mol/mol) through the "selective complexation-decomplexation" strategy.  相似文献   

7.
The present paper reports the photophysical investigations on supramolecular interaction of a phthalocyanine derivative, namely, 2,9,16,23-tetra-tert-butyl-29H,31H-Pc (1) with C(60) and C(70) in toluene. The binding constants of the C(60) and C(70) complexes of 1 are estimated to be 27,360 and 25,205 dm(3), respectively. Transient absorption measurements in the visible region establishes that energy transfer from C60*T (and C70*T) to 1 occurs predominantly in toluene which is subsequently confirmed by the consecutive appearance of the triplet states of 1. Quantum chemical calculations at DFT level of theory explore the geometry and electronic structure of the supramolecules and testify the significant redistribution of charge between fullerenes and 1.  相似文献   

8.
Supramolecular complexation of [60]- and [70]fullerenes with 37-allyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert butyl)calix[6]arene (I) has been studied in CCl(4) medium by NMR spectrometric method. All of the complexes are found to be stable with 1:1 stoichiometry. Formation constants (K) of the above supramolecular complexes have been determined from systematic variation of NMR chemical shifts of specific protons of I in the presence of [60]- and [70]fullerenes. Trends in the K value suggest that [70]fullerene binds more strongly with I relative to [60]fullerene. Both PM3 and ab initio calculations reveal that the intermolecular interaction in the [70]fullerene/I complex proceeds through quite deep energy minima.  相似文献   

9.
A series of novel supramolecular complexes composed of a three-point binding C(60)-trispyridylporphyrin dyad (1) or C(70)-trispyridylporphyrin dyad (2) and zinc tetraphenylporphyrin (ZnP) were constructed by adopting a "covalent-coordinate" bonding approach, composed of three-point binding. The dyads and self-assembled supramolecular triads or pentads formed by coordinating the pyridine groups located on the dyads to ZnP, have been characterized by means of spectral and electrochemical techniques. The formation constants of ZnP-1 and ZnP-2 complexes were calculated as 1.4 × 10(4) M(-1) and 2.0 × 10(4) M(-1), respectively, and the Stern-Volmer quenching constants K(SV) were founded to be 2.9 × 10(4) M(-1) and 5.5 × 10(4) M(-1), respectively, which are much higher than those of other supramolecular complexes such as previously reported ZnP-3 (N-ethyl-2-(4-pyridyl)-3,4-fulleropyrrolidine). The electrochemical investigations of these complexes suggest weak interactions between the constituents in the ground state. The excited states of the complexes were further monitored by time-resolved fluorescence measurements. The results revealed that the presence of the multiple binding point dyads (1 or 2) slightly accelerated the fluorescence decay of ZnP in o-DCB relative to that of the "single-point" bound supramolecular complex ZnP-3. In comparison with 1 and 2, C(70) is suggested as a better electron acceptor relative to C(60). DFT calculations on a model of supramolecular complex ZnP-1 (with one ZnP entity) were performed. The results revealed that the lowest unoccupied molecular orbital (LUMO) is mainly located on the fullerene cage, while the highest occupied molecular orbital (HOMO) is mainly located on the ZnP macrocycle ring, predicting the formation of radical ion pair ZnP(+)˙-H(2)P-C(60)(-)˙ during photo-induced reaction.  相似文献   

10.
Various tribenzotriquinacenes (TBTQs), most of which incorporate six functional groups at the periphery of their C3v-symmetrical, rigid and convex-concave molecular framework, have been studied with respect to their ability to form supramolecular complexes with the C60 and C70 fullerenes, either in the solid state or in solution. The hexabromo derivative Br6-TBTQ was cocrystallized with C60 as [Br6-TBTQ相似文献   

11.
The present paper reports the photophysical aspects of a very interesting and unique host-guest interaction between fullerene and phthalocyanines, viz., free base phthalocyanine (H2-Pc) and zinc-phthalocyanine (Zn-Pc), in toluene medium. Ground state electronic interaction between these two supramolecules has been evidenced from the observation of well-defined charge transfer (CT) absorption bands in the visible region. Vertical ionization potentials of the phthalocyanines have been determined utilizing CT transition energy. Magnitude of degrees of CT reveals that, in the ground state, 2-4% CT takes place. Binding constants (K) for the fullerene/phthalocyanine complexes were determined from the fluorescence quenching experiment. Large K values in the ranges approximately 4.7 x 10(4) to 7.3 x 10(4) and 2.3 x 10(4) to 2.5 x 10(4) dm(3) x mol(-1) were obtained for the 1:1 fullerene complexes of Zn and H 2-Pc, respectively. Values of K suggest that both H 2- and Zn-Pc could not serve as an efficient discriminators between C60 and C70. Theoretical calculations as well as (13)C NMR studies establish that the orientation of C 70 toward phthalocyanine is favored in end-on orientation, which proves that interaction between fullerenes and phthalocyanines were governed by the electrostatic mechanism rather than dispersive forces associated with pi-pi interaction.  相似文献   

12.
[60]- and [70]Fullerenes have been shown to form 1:1 supramolecular complexes with bis[2-(5,11,17,23,29,35-hexa-tert-butyl-37,38,39,40,41-pentahydroxycalix[6]arenyl-oxy ethyl ether) (1) and 5,11,17,23,29,35-hexa-tert-butyl-37,38,40,41-tetra hydroxyl-39,42-(crown-4)calix[6]arene (2) in CHCl3 medium by electronic absorption spectroscopy. Formation constants (K) of the complexes of [60]- and [70]fullerenes with 1 and 2 have been determined at room temperature from which free energy of formation values of the complexes have been estimated. The very high formation constant value of [60]fullerene/1 complex (5900 dm3 mol-1) in indicative of formation of inclusion complex. Moreover, PM3 calculations reveal that intermolecular interaction between [60]fullerene and 1 proceeds through quite deep energy molecular orbital.  相似文献   

13.
The present paper reports the results of a photophysical investigation of a designed monoporphyrin (1) and its supramolecular complexes with C60, C70 and derivatized fullerenes, namely tert-butyl-(1,2-methanofullerene)-61-carboxylate (2) and [6,6]-phenyl C71 butyric acid methyl ester (3) in toluene. UV–vis studies reveal appreciable ground state interaction between the fullerenes and compound 1. Steady state fluorescence studies show quenching of fluorescence of 1 in the presence of fullerenes. The binding constants of the C60/1, C70/1, 2/1 and 3/1 complexes are estimated to be 300, 20770, 1150 and 13170 dm3⋅mol−1, respectively. Molecular mechanics calculations in vacuo evoke the stereoscopic structures of the fullerene/1 complexes and allow interpretation of the stability difference among various fullerene complexes of 1 in terms of their enthalpies of formation.  相似文献   

14.
The formation of supramolecular host-guest complexes of fullerene (C(60)) and two novel tribenzotriquinacene based hosts (5 a and 5 b) was investigated in solution and in the solid state. Stability constants for 1:1 and 2:1 complexes were obtained from spectroscopic (UV/Vis, (1)H NMR) titration experiments. Association constants of K(1)=(2908+/-360) L mol(-1) and K(2)=(2076+/-300) L mol(-1) for C(60)/5 a, and K(1)=(5608+/-220) L mol(-1) and K(2)=(673+/-160) L mol(-1) for C(60)/5 b were obtained. Single crystal X-ray structural analysis of compound C(60) subset5 b3 toluene revealed that a molecule of C(60) was located at short van der Waals contact distances in the open pre-organised cavity of the rigid host. The supramolecular complex created resembles an engineered nanosized ball joint and represents the first member for a future nanomechanics construction kit.  相似文献   

15.
To improve the selectivity ratio of C70 over C60, a new designer molecule, viz., 3-fluoromesotetraphenylporphyrin (1) has been reported in the present investigations. Fluorescence studies reveal that the Q-absorption band of 1 gets sufficient quenching effect upon addition of both C60 and C70. Binding constants (K) of the C60/1 and C70/1 complexes are estimated to be 580 and 10,800 dm3 mol(-1), respectively. Thus, K(C70)/K(C60) is approximately 19 which is very large and even comparable with other macrocyclic host molecules like calix[5]arene, azacalix[m]arene[n]pyridine, cyclotriveratrylenophane and calixarene bisporphyrin. 1H NMR chemical shift measurements show that the -NH- proton of 1 suffers more shifts in presence of C70 compared to C60. This finding also offers a good support in favor of high K value for C70/1 complex as well as large selectivity ratio of C70 over C60.  相似文献   

16.
Noncovalent binding of fullerenes to bisporphyrins was studied in the gas phase by energy-dependent collision-induced dissociation (CID) with Xe under single-collision conditions. The electrospray ionization mass spectra of calix[4]arene-linked bisporphyrins show that bisporphyrins take up to 3-4 protons, depending on the type of meso-substituents. Of the protonated bisporphyrins, the diprotonated species form stable 1:1 complexes with fullerenes (C(60) and C(70)). CID cracking patterns of the diprotonated bisporphyrins indicate that each monomeric porphyrin moiety is singly protonated. CID yield-energy curves obtained from the 1:1 diprotonated bisporphyrin-fullerene complexes suggest that a fullerene occupies the endo-binding site intercalated between the two singly protonated porphyrin moieties. In the cases of 1:2 diprotonated bisporphyrin-fullerene complexes, CID results show that one fullerene binds inside (endo-binding) and the other outside (exo-binding). The exo-binding mode is energetically almost identical to the binding of fullerenes to singly protonated porphyrin monomers. The endo-binding energy is at least twice the exo-binding energy. To gain insights into the binding mode, we optimized structures of diprotonated bisporphyrins and their 1:1 endo-complexes with fullerenes, and calculated the endo-binding energy for C(60), C(70) (end-on), and C(70) (side-on). The endo-binding of fullerenes to diprotonated bisporphyrins nearly doubles the π-π interactions while reducing the electrostatic repulsion between the two singly protonated porphyrin moieties. The side-on binding of C(70) is favored over the end-on binding because the former exerts less steric strain to the lower rim of calixarene.  相似文献   

17.
Exploiting the shape and electronic complementarity of C(60) and C(70) with π-extended derivatives of tetrathiafulvalene (exTTF), we have very recently reported a macrocyclic receptor featuring two exTTF recognizing units which forms 1:1 complexes with C(60) with log K(a) = 6.5 ± 0.5 in chlorobenzene at 298 K. This represents one of the highest binding constants toward C(60) reported to date and a world-record for all-organic receptors. Here, we describe our efforts to fine-tune our macrocyclic bis-exTTF hosts to bind C(60) and/or C(70), through structural variations. On the basis of preliminary molecular modeling, we have explored p-xylene, m-xylene, and 2,6-dimethylnaphthalene as aromatic spacers between the two exTTF fragments and three alkene-terminated chains of different length to achieve macrocycles of different size through ring closing metathesis. Owing to the structural simplicity of our design, all nine receptors could be accessed in a synthetically straightforward manner. A thorough investigation of the binding abilities of these nine receptors toward C(60) and C(70) has been carried out by means of UV-vis titrations. We have found that relatively small variations in the structure of the host lead to very significant changes in affinity toward the fullerene, and in some cases even in the stoichiometry of the associates. Our results highlight the peculiarities of fullerenes as guests in molecular recognition. The extreme stability of these associates in solution and the unique combination of electronic and geometrical reciprocity of exTTF and fullerenes are the main features of this new family of macrocyclic hosts for fullerenes.  相似文献   

18.
New ionic complexes of fullerenes C(60) and C(70) with decamethylchromocene Cp*(2)Cr.C60.(C(6)H(4)Cl(2))(2) (1), Cp*(2)Cr.C60.(C(6)H(6))(2) (2); the multicomponent complex of (Cs(+))(C70-) with cyclotriveratrylene CTV.(Cs)(2).(C70)(2).(DMF)(7).(C(6)H(6))(0.75) (3); bis(benzene)chromium Cr(C(6)H(6))(2).C60.(C(6)H(4)Cl(2))(0.7) (4), Cr(C(6)H(6))(2).C60.C(6)H(5)CN (5), Cr(C(6)H(6))(2).C70.C(6)H(4)Cl(2) (6), Cr(C(6)H(6))(2).C60 (7); cobaltocene Cp(2)Co.C60.C(6)H(4)Cl(2) (8), Cp(2)Co.C70.(C(6)H(4)Cl(2))(0.5) (9); and cesium Cs.C70.(DMF)(5) (10) have been obtained. The complexes have been characterized by the elemental analysis, IR-, UV-vis-NIR spectroscopy, EPR and SQUID measurements. It is shown that C(60)(.-) exists as a single-bonded diamagnetic (C60-)2 dimer in 1, 2, 4, 5, and 8 at low temperatures (1.9-250 K). The dimers dissociate above 160-250 K depending on donor and solvent molecules involved in the complex. C60(.-) dimerizes reversibly and shows a small hysteresis (<2 K) at slow cooling and heating rates. The single-bonded diamagnetic (C70-)2 dimers are also formed in 6, 9, and 10 and begin to dissociate only above 250-360 K. The IR and UV-vis-NIR spectra of sigma-bonded negatively charged fullerenes are presented.  相似文献   

19.
At room temperature, fluorescence spectra for C60 in organic solvents of four typical kinds have been reported, which indicate that intensity of fluorescence and fine structure of fluorescence peaks are dependent on the interaction between C60 and solvent. It is shown that the solvents of effective electron donors could make a comparatively strong interaction with fullerenes due to formation of the charge transfer adduct, which could greatly distort the molecular symmetry, leading to the strong and well-resolved fluorescence. The strong fluorescence spectra for C70 in room temperature solutions are also observed.  相似文献   

20.
We report the synthesis and characterization of a novel type of nanohoop, consisting of a cycloparaphenylene derivative incorporating a curved heptagon-containing π-extended polycyclic aromatic hydrocarbon (PAH) unit. We demonstrate that this new macrocycle behaves as a supramolecular receptor of curved π-systems such as fullerenes C60 and C70, with remarkably large binding constants (ca. 107 M−1), as estimated by fluorescence measurements. Nanosecond and femtosecond spectroscopic analysis show that these host-guest complexes are capable of quasi-instantaneous charge separation upon photoexcitation, due to the ultrafast charge transfer from the macrocycle to the complexed fullerene. These results demonstrate saddle-shaped PAHs with dibenzocycloheptatrienone motifs as structural components for new macrocycles displaying molecular receptor abilities and versatile photochemical responses with promising electron-donor properties in host-guest complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号