首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

2.
Crystal structures of three Ni(CN)(4)(2)(-) salts all with eclipsed ligands and varying axial stacking arrangements are presented. The absorption spectra of all three salts show a slight red shift in the x,y-polarizations and a large red shift in their z-polarizations upon crystallization from solution. Semiempirical ZINDO calculations provide a good model of the solid state, even with only a three-molecule segment, allowing reproduction of the red-shifting and intensity increase upon crystallization found experimentally. The modified nickel beta(s,p) bonding parameter of -5 found appropriate for Ni coordination in our previous studies of single Ni(CN)(4)(2-) planes and a helically stacked Cs(2)[Ni(CN)(4)].H(2)O crystal was changed to -3 for the more parallel-stacked Ni(CN)(4)(2-) planes in this case, while beta(d) was retained at -41. Crystal data are as follows: Na(2)[Ni(CN)(4)].3H(2)O, triclinic space group P1, a = 7.2980(10) A, b = 8.8620(10) A, c = 15.132(2) A, alpha = 89.311(5) degrees, beta = 87.326(5) degrees, gamma = 83.772(6) degrees, V = 971.8(2) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.064; Sr[Ni(CN)(4)].5H(2)O, monoclinic space group C2/m, a = 10.356(2) A, b = 15.272(3) A, c = 7.1331(10) A, beta = 98.548(12) degrees, V = 1115.6(3) A(3), T = 100 K, Z = 4, R = 0.024, R(w) = 0.059; Rb(2)[Ni(CN)(4)].1.05H(2)O, triclinic space group P1, a = 8.6020(10) A, b = 9.6930(10) A, c = 12.006(2) A, alpha = 92.621(6) degrees, beta = 94.263(6) degrees, gamma = 111.795(10) degrees, V = 924.0(2) A(3), T = 100 K, Z = 4, R = 0.034, R(w) = 0.067.  相似文献   

3.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   

4.
To shed light on the interaction in molecule-based magnetic materials, the decamethylmetallocenium hexafluorophosphates, [(C(5)Me(5))(2)M](+) [PF(6)](-) with M = Cr, Mn, Fe, Co, and Ni, as well as the tetracyanoethenides, [(C(5)Me(5))(2)M](+) [TCNE](-) with M = Cr, Mn, Fe, and Co, have been investigated in the solid state by using (1)H, (13)C, (19)F, and (31)P NMR spectroscopy under magic angle spinning (MAS). The isotropic (13)C and (1)H NMR signals cover ranges of about 1300 and 500 ppm, respectively. From the shift anisotropies of the ring carbon signal of the [(C(5)Me(5))(2)M](+) cations, the total unpaired electron spin density in the ligand pi orbitals has been calculated; it amounts up to 36% (M = Ni) and is negative for M = Cr, Mn, and Fe. The radical anion of [(C(5)Me(5))(2)M](+) [TCNE](-) shifts the (13)C NMR signals of all [(C(5)Me(5))(2)M](+) cations to high frequency, which establishes transfer of positive spin density from the anions to the cations. The (19)F and (31)P NMR signals of the paramagnetic salts [(C(5)Me(5))(2)M](+) [PF(6)](-) are shifted up to 13.5 ppm relative to diamagnetic [(C(5)Me(5))(2)Co](+) [PF(6)](-). The signs of these shifts are the same as those of the pi spin density in [(C(5)Me(5))(2)M](+). After consideration of interionic ligand- and metal-centered dipolar shifts, this establishes cation-anion spin delocalization. The mixed crystals [(C(5)Me(5))(2)M(x)Co(1-x)](+)[PF(6)](-) have been prepared for M = Cr and Ni. They are isostructural with [(C(5)Me(5))(2)Co](+) [PF(6)](-) whose single-crystal structure has been determined by X-ray diffraction. The (13)C, (19)F, and (31)P MAS NMR spectra of the mixed crystals show that the respective two closest paramagnetic ions in the lattice delocalize spin density to [(C(5)Me(5))(2)Co](+), [(C(5)Me(5))(2)Ni](+), and [PF(6)](-). In [(C(5)Me(5))(2)M](+), about 10(-4) au per carbon atom are transferred.  相似文献   

5.
The generation of metal cyanide ions in the gas phase by laser ablation of M(CN)(2) (M = Co, Ni, Zn, Cd, Hg), Fe(III)[Fe(III)(CN)(6)] x xH(2)O, Ag(3)[M(CN)(6)] (M = Fe, Co), and Ag(2)[Fe(CN)(5)(NO)] has been investigated using Fourier transform ion cyclotron resonance mass spectrometry. Irradiation of Zn(CN)(2) and Cd(CN)(2) produced extensive series of anions, [Zn(n)(CN)(2n+1)](-) (1 < or = n < or = 27) and [Cd(n)(CN)(2n+1)](-) (n = 1, 2, 8-27, and possibly 29, 30). Cations Hg(CN)(+) and [Hg(2)(CN)(x)](+) (x = 1-3), and anions [Hg(CN)(x)](-) (x = 2, 3), are produced from Hg(CN)(2). Irradiation of Fe(III)[Fe(III)(CN)(6)] x xH(2)O gives the anions [Fe(CN)(2)](-), [Fe(CN)(3)](-), [Fe(2)(CN)(3)](-), [Fe(2)(CN)(4)](-), and [Fe(2)(CN)(5)](-). When Ag(3)[Fe(CN)(6)] is ablated, [AgFe(CN)(4)](-) and [Ag(2)Fe(CN)(5)](-) are observed together with homoleptic anions of Fe and Ag. The additional heterometallic complexes [AgFe(2)(CN)(6)](-), [AgFe(3)(CN)(8)](-), [Ag(2)Fe(2)(CN)(7)](-), and [Ag(3)Fe(CN)(6)](-) are observed on ablation of Ag(2)[Fe(CN)(5)(NO)]. Homoleptic anions [Co(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n+2)](-) (n = 1-3), [Co(2)(CN)(4)](-), and [Co(3)(CN)(5)](-) are formed when anhydrous Co(CN)(2) is the target. Ablation of Ag(3)[Co(CN)(6)] yields cations [Ag(n)(CN)(n-1)](+) (n = 1-4) and [Ag(n)Co(CN)(n)](+) (n = 1, 2) and anions [Ag(n)(CN)(n+1)](-) (n = 1-3), [Co(n)(CN)(n-1)](-) (n = 1, 2), [Ag(n)Co(CN)(n+2)](-) (n = 1, 2), and [Ag(n)Co(CN)(n+3)](-) (n = 0-2). The Ni(I) species [Ni(n)(CN)(n-1)](+) (n = 1-4) and [Ni(n)(CN)(n+1)](-) (n = 1-3) are produced when anhydrous Ni(CN)(2) is irradiated. In all cases, CN(-) and polyatomic carbon nitride ions C(x)N(y)(-) are formed concurrently. On the basis of density functional calculations, probable structures are proposed for most of the newly observed species. General structural features are low coordination numbers, regular trigonal coordination stereochemistry for d(10) metals but distorted trigonal stereochemistry for transition metals, the occurrence of M-CN-M and M(-CN-)(2)M bridges, addition of AgCN to terminal CN ligands, and the occurrence of high spin ground states for linear [M(n)(CN)(n+1)](-) complexes of Co and Ni.  相似文献   

6.
Seven new cyano-bridged heterometallic systems have been prepared by assembling [M'(rac-CTH)]n+ complexes (M' = CrIII, NiII, CuII), which have two cis available coordination positions, and [M(CN)6]3- (M = FeIII, CrIII) and [Fe(CN)2(bpy)2]+ cyanometalate building blocks. The assembled systems, which have been characterized by X-ray crystallography and magnetic investigations, are the molecular squares (meso-CTH-H2)[{Ni(rac-CTH)}2{Fe(CN)6)}2].5H2O (2) and [{Ni(rac-CTH)}2{Fe(CN)2(bpy)2}2](ClO4)4.H2O (5), the bimetallic chain [{Ni(rac-CTH)}2{Cr(CN)6)}2Ni(meso-CTH)].4H2O (3), the trimetallic chain [{Ni(rac-CTH)}2{Fe(CN)6)}2Cu(cyclam)]6H2O (4), the pentanuclear complexes [{Cu(rac-CTH}3{Fe(CN)6}2].2H2O (6) and [{Cu(rac-CTH)}3{Cr(CN)6)}2].2H2O (7), and the dinuclear complex [Cr(rac-CTH)(H2O)Fe(CN)6].2H2O (8). With the exception of 5, all compounds exhibit ferromagnetic interaction between the metal ions (JFeNi = 12.8(2) cm-1 for 2; J1FeCu= 13.8(2) cm-1 and J2FeCu= 3.9(4) cm-1 for 6; J1CrCu= 6.95(3) cm-1 and J2CrCu= 1.9(2)cm-1 for 7; JCrFe = 28.87(3) cm-1 for 8). Compound 5 exhibits the end of a transition from the high-spin to the low-spin state of the octahedral FeII ions. The bimetallic chain 3 behaves as a metamagnet with a critical field Hc = 300 G, which is associated with the occurrence of week antiferromagnetic interactions between the chains. Although the trimetallic chain 4 shows some degree of spin correlation along the chain, magnetic ordering does not occur. The sign and magnitude of the magnetic exchange interaction between CrIII and FeIII in compound 8 have been justified by DFT type calculations.  相似文献   

7.
The olivine-type compounds LiMPO4 (M = Mn, Fe, Co, Ni) consist of MO4 layers made up of corner-sharing MO6 octahedra of high-spin M2+ ions. To gain insight into the magnetic properties of these phosphates, their spin exchange interactions were estimated by spin dimer analysis using tight binding calculations and by electronic band structure analysis using first principles density functional theory calculations. Three spin exchange interactions were found to be important for LiMPO4, namely, the intralayer superexchange J1, the intralayer super-superexchange Jb along the b-direction, and the interlayer super-superexchange J2 along the b-direction. The magnetic ground state of LiMPO4 was determined in terms of these spin exchange interactions by calculating the total spin exchange interaction energy under the classical spin approximation. In the spin lattice of LiMPO4, the two-dimensional antiferromagnetic planes defined by the spin exchange J1 are antiferromagnetically coupled by the spin exchange J2, in agreement with available experimental data.  相似文献   

8.
Treatment of several divalent transition-metal trifluoromethanesulfonates [M(II)(OTf)2; M(II) = Mn, Co, Ni] with [NEt4][Tp*Fe(III)(CN)3] [Tp* = hydridotris(3,5-dimethylpyrazol-1-yl)borate] in DMF affords three isostructural rectangular clusters of {[Tp*Fe(III)(CN)3M(II)(DMF)4]2[OTf]2} x 2DMF (M(II) = Mn, 3; Co, 4; Ni, 5) stoichiometry. Magnetic studies of 3-5 indicate that the Tp*Fe(CN)3(-) centers are highly anisotropic and exhibit antiferromagnetic (3 and 4) and ferromagnetic (5) exchange to afford S = 4, 2, and 3 spin ground states, respectively. ac susceptibility measurements suggest that 4 and 5 exhibit incipient single-molecule magnetic behavior below 2 K.  相似文献   

9.
在合成和表征了一系列新的异核异价三核过渡金属羧酸配合物〔Fe2 Ⅲ MⅡ O (OOCC2 H5 ) 6 L3〕 (M =Co ,Ni,Mn ;L =C5 H5 N ,H2 O)的基础上 ,利用多种NMR技术并结合UV谱研究了这些配合物在不同溶剂介质和温度下的谱学特征和动力学性质。利用谱峰积分比例、线宽、相同骨架分子的配体取代和纵向弛豫时间对1 HNMR谱进行了归属。实验结果表明 :这类配合物的金属离子间通过中心氧桥存在一定的反铁磁相互作用 ,从而在整体上削弱了顺磁性的影响 ,仍能观察到NMR谱。实验还发现这些配合物在CD3CN和DMSO溶剂中的结构与晶体结构一致 ,而在水中则分解为金属离子、羧酸盐和吡啶。这些结果有助于指导类似配合物的合成  相似文献   

10.
The first known paramagnetic, tetrahedral cyanide complex, [Mn(II)(CN)(4)](2)(-), is formed by the photoinduced decomposition of [Mn(IV)(CN)(6)](2)(-) in nonaqueous solutions or by thermal decomposition in the solid state. In acetonitrile or dichloromethane, photoexcitation into the ligand-to-metal charge transfer band (lambda(max) = 25 700 cm(-1), epsilon = 3700 cm(-1) M(-1)) causes the homolytic cleavage of cyanide radicals and reduction of Mn(IV). Free cyanide in dichloromethane leads to the isolation of polycyanide oligomers such as [C(12)N(12)](2)(-) and [C(4)N(4)](-), which was crystallographically characterized as the PPN(+) salt C(40)H(30)N(5)P(2): monoclinic space group = I2/a, a = 18.6314(2) A, b = 9.1926(1) A, c = 20.8006(1), beta =106.176(2) degrees, Z = 4]. In the solid state Mn(IV)-CN bond homolysis is thermally activated above 122 degrees C, according to differential scanning calorimetry measurements, leading to the reductive elimination of cyanogen. The [Mn(II)(CN)(4)](2-) ion has a dynamic solution behavior, as evidenced by its concentration-dependent electronic and electron paramagnetic spectra, that can be attributed to aggregation of the coordinatively and electronically unsaturated (four-coordinate, 13-electron) metal center. Due to dynamics and lability of [Mn(II)(CN)(4)](2-) in solution, its reaction with divalent first-row transition metal cations leads to the formation of lattice compounds with both tetrahedral and square planar local coordination geometries of the metal ions and multiple structural and cyano-linkage isomers. alpha-Mn(II)[Mn(II)(CN)(4)] has an interpenetrating sphalerite- or diamond-like network structure with a unit cell parameter of a = 6.123 A (P43m space group) while a beta-phase of this material has a noninterpenetrating disordered lattice containing tetrahedral [Mn(II)(CN)(4)](2-). Linkage isomerization or cyanide abstraction during formation results in alpha-Mn(II)[Co(II)(CN)(4)] and Mn(II)[Ni(II)(CN)(4)] lattice compounds, both containing square planar tetracyanometalate centers. alpha-Mn(II)[Co(II)(CN)(4)] is irreversibly transformed to its beta-phase in the solid state by heating to 135 degrees C, which causes a geometric isomerization of [Co(II)(CN)(4)](2)(-) from square planar (nu(CN) = 2114 cm(-1), S = (1)/(2)) to tetrahedral (nu(CN) = 2158 cm(-1), S = (3)/(2)) as evidenced by infrared and magnetic susceptibility measurements. Mn(II)[Ni(II)(CN)(4)] is the only phase formed with Ni(II) due to the high thermodynamic stability of square planar [Ni(II)(CN)(4)](2)(-).  相似文献   

11.
A series of isomorphous M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Co, Ni, Zn; Cu is similar) coordination polymers was synthesized from the reaction of M(II) with KAu(CN)(4); they consist of octahedrally coordinated metal centres with four equatorial water molecules and trans-axial N-cyano ligands from [Au(CN)(4)](-) moieties, generating a linear 1-D chain of M(H(2)O)(4)[Au(CN)(4)]-units. An additional interstitial [Au(CN)(4)](-) unit forms AuN and hydrogen bonds with adjacent chains. The Cu(II) system readily loses water to yield Cu[Au(CN)(4)](2)(H(2)O)(4), which was not structurally characterized. The magnetic properties of these polymers were investigated by a combination of SQUID magnetometry and zero-field muon spin relaxation (ZF-μSR). Only weak antiferromagnetic interactions along the chains are mediated by the [Au(CN)(4)]-units, but the ZF-μSR data indicates that interchain interactions yield a phase transition to a magnetically ordered state for Cu[Au(CN)(4)](2)(H(2)O)(4) below 0.6 K, while for M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Co), depopulation of zero-field split Kramer's doublets to an effective "S = 1/2" ground state yields a transition to a spin-frozen magnetic state below 0.26 K. On the other hand, only a simple slowing-down of spins above 0.02 K is observed for the more weakly zero-field split M(H(2)O)(4)[Au(CN)(4)](2)·4H(2)O (M = Mn, Ni) complexes.  相似文献   

12.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by M?ssbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.  相似文献   

13.
By treating disodium(thiophenedirnethylene)dicyclopentadienide C_4H_2S(CH_2C_5H_4Na)_2 with two equivalent of CpTiCl_3 or CpZrCl_3 DME at 0℃ in THF,two new thiophenedimethylene bridged binuclear metallocenes [Cl_2MC_5H_5][C_5H_4CH_2C_4H_2SCH_2C_5H_4][C_5H_5MCl_2](M=Ti 3,M=Zr 4)were synthesized in high yield and their structures were characterized by ~1H-NMR.These complexes were used as catalysts for ethylene polymerization in the presence of methylaluminoxane(MAO).The effects of polymerization temperature,time,concentration of catalyst,molar ratio of MAO/Cat on polymerization were studied in detail.The catalytic activities of thiophenedimethylene bridged binuclear metallocene catalysts(3,4)reached 2.44×10~5 g PE mol~(-1)·cat~(-1)·h~(-1),9.61×10~5 g PE mol~(-1)·cat~(-1)·h~(-1) respectively,which are higher than that of pheneyldimethylene bridged binuclear metallocene catalysts and much higher than that of corresponding mononuclear metallocenes(Cp_2TiCl_2 and Cp_2ZrCl_2).The molecular weight distribution curves of polyethylenes produced by binuclear metallocene catalysts(3,4)and by mononuclear metallocene catalyst have only single peak,but the former(MWD=3.5-4.7)is obviously broader than the latter(MWD=2.0-2.2).  相似文献   

14.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

15.
The compounds (bpy-dq)[Ni(CN)(4)].2H(2)O (1), (bpy-dq)[Pd(CN)(4)].2H(2)O (2), and ((bpy-dq)[Pt(CN)(4)].2H(2)O (3) (bpy-dq = (C(12)H(12)N(2))(2+), 6,7-dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium) and (phen-dq)[Ni(CN)(4)] (4), (phen-dq)[Pd(CN)(4)].H(2)O (5), and (phen-dq)[Pt(CN)(4)].H(2)O (6) (phen-dq = (C(14)H(12)N(2))(2+), 5,6-dihydropyrazino[1,2,3,4-lmn]-1,10-phenanthrolinediium) have been synthesized and characterized by X-ray diffraction. The three bipyridinium diquaternary salt derivatives are isostructural. The crystal structures of these dihydrated compounds consist of columns formed by alternating anion complexes and diquaternary cations, pi-pi interacting through cyanide ligands and the aromatic rings, and stabilized by an extended hydrogen-bond network. On the other hand, the packing in the phenanthrolinium diquaternary salt derivatives is strongly dependent on the hydration degree. Thus, the anhydrous [Ni(CN)(4)](2-) compound presents a laminar arrangement and the hydrated salts show a columnar packing, similar but not the same as compounds 1-3. The anhydrous form of compound 5 is isostructural with compound 4. Vibrational (IR, Raman) and thermogravimetric studies of these compounds have been carried out. Finally, DFT calculations have been performed on the isolated tetracyanometalate anions and diquaternary cations to assign the fundamental modes in the vibrational spectra. The intermolecular weak interactions were studied through the analysis of the charge density by using the theory of atoms in molecules (AIM).  相似文献   

16.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

17.
The trinuclear and the tetranuclear complexes [[iPrtacnCr(CN)3]2[Ni(cyclam)]](NO3)2.5H2O 1 (cyclam = 1,4,8,11-tetraazacyclotetradecane, iPrtacn = 1,4,7-tris-isopropyl-1,4,7-triazacyclononane) and [[iPrtacnCr(CN)3Ni(Me2bpy)2]2](ClO4)4.2CH3CN 2 (Me2bpy = 4,4-dimethyl-2,2-bipyridine) were synthesized by reacting (iPrtacn)Cr(CN)3 with [Ni(cyclam)](NO3)2 and [Ni(Me2bpy)2(H2O)2](ClO4)2, respectively. The crystallographic structure of the two compounds was solved. The molecular structure of complex 1 consists of a linear Cr-Ni-Cr arrangement with a central Ni(cyclam) unit surrounded by two Cr(iPrtacn)(CN)3 molecules through bridging cyanides. Each peripheral chromium complex has two pending CN ligands. Complex 2 has a square planar arrangement with the metal ions occupying the vertices of the square. Each Cr(iPrtacn)(CN)3 molecule has two bridging and one non-bridging cyanide ligands. The magnetic properties of the two complexes were investigated by susceptibility vs. temperature and magnetization vs. field studies. As expected from the orthogonality of the magnetic orbitals between Cr(III) (t2g3) and Ni(II) (e(g)2) metal ions, a ferromagnetic exchange interaction occurs leading to a spin ground states S = 4 and 5 for 1 and 2, respectively. The magnetization vs. field studies at T = 2, 3 and 4 K showed the presence of a magnetic anisotropy within the ground spin states leading to zero-field splitting parameters obtained by fitting the data D4 = 0.36 cm(-1) and D5 = 0.19 cm(-1) (the indices 4 and 5 refer to the ground states of complexes 1 and 2, respectively). In order to quantify precisely the magnitude of the axial (D) and the rhombic (E) anisotropy parameters, High-field high frequency electron paramagnetic resonance (HF-HFEPR) experiments were carried out. The best simulation of the experimental spectra (at 190 and 285 GHz) gave the following parameters for 1: D4 = 0.312 cm(-1), E4/D4 = 0.01, g4x = 2.003, g4y = 2.017 and g4z = 2.015. For complex 2 two sets of parameters could be extracted from the EPR spectra because a doubling of the resonances were observed and assigned to the presence of complexes with slightly different structures at low temperature: D5 = 0.154 (0.13) cm(-1), E5/D5 = 0.31 (0.31) cm(-1), g4x = 2.04 (2.05), g4y = 2.05 (2.05) and g4z = 2.03 (2.02). The knowledge of the magnetic anisotropy parameters of the mononuclear Cr(iPrtacn)(CN)3, Ni(cyclam)(NCS)2 and Ni(bpy)2(NCS)2 complexes by combining HF-HFEPR studies and calculation using a software based on the angular overlap model (AOM) allowed to determine the orientation of the local D tensors of the metal ions forming the polynuclear complexes. We, subsequently, show that the anisotropy parameters of the polynuclear complexes computed from the projection of the local tensors are in excellent agreement with the experimental ones extracted from the EPR experiments.  相似文献   

18.
Treatment of cyclotrisilathiane (Me2SiS)3 with 3 equiv. of RLi (R = Me, But) in hexane-Et2O afforded the lithium silanethiolates LiSSiMe2R, and the tmeda adduct [(tmeda)LiSSiMe2But]2 1 (tmeda =N,N,N',N'-tetramethylethylenediamine) was isolated in the case of R = But. Reaction of Fe(CH3CN)2(CF3SO3)2, CoCl2, and [Cu(CH3CN)4](PF6) with 1 gave rise to the silanethiolato complexes M(SSiMe2But)2(tmeda)(M = Fe 2, Co 3), and [Cu(SSiMe2But)]4 4, respectively. Complexes (C5H5)2Ti(SSiMe2R)2(R = Me 5, But 6) and Ni(SSiMe2R)2(dppe)[R = Me 7, But 8; dppe = 1,2-bis(diphenylphosphino)ethane] were prepared from treatments of (C5H5)2TiCl2 and NiCl2(dppe) with the corresponding lithium silanethiolates. Complex 7 readily reacted with (C5H5)TiCl3 to produce the Ti-Ni heterobimetallic compound (C5H5)TiCl(mu-S)2Ni(dppe) 9, in which silicon-sulfur bond cleavage took place. Characterization of all compounds through spectroscopic techniques and elemental analyses are also described. X-Ray structural data for compounds 1 and 3-9 are reported.  相似文献   

19.
The crystal structures of [MnTPP]{Ni[S2C2H(CN)]2} [MnTPP = (meso-tetraphenylporphinato)manganese(III)] and [MnTPP]{Ni[S2C2(CN)2]2} have been determined. These salts possess trans-mu-coordination of S = 1/2 {Ni[S2C2H(CN)]2}*- and {Ni[S(2)C(2)(CN)(2)](2)}*- to Mn(III) and form parallel 1-D coordination polymer chains exhibiting nu(CN) at 2210 and 2200 and 2220 and 2212 cm(-1), respectively. The bis(dithiolato) monoanions are planar and bridge two cations with MnN distances of 2.339(16), and 2.394(3) A, respectively, which are comparable to related MnN distances observed for [MnTPP][TCNE].x(solvates). In addition, [MnTP'P]{Ni[S2C2(CN)2]2} {H2TP'P = meso-tetrakis[3,5-di-tert-butyl-4-hydroxyphenyl)porphyrin] and [MnTP'P(OH2)]{Ni[S2C2(CN)2]2} were prepared. The latter forms isolated paramagnetic ions. The room-temperature values of chiT for 1-D [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2} are 2.55, 3.28, and 2.86 emu K/mol, respectively. Susceptibility (chi) measurements between 2 and 300 K reveal weak antiferromagnetic interactions with theta= -5.9 and -0.2 K for [MnTPP]{Ni[S(2)C(2)H(CN)](2)} and [MnTPP]{Ni[S2C2(CN)2]2}, respectively, and stronger antiferromagnetic coupling of -50 K for [MnTP'P]{Ni[S2C2(CN)2]2} from fits of chi(T) to the Curie-Weiss law. The 1-D intrachain coupling, J(intra), of [MnTPP]{Ni[S2C2H(CN)]2} and [MnTPP]{Ni[S2C2(CN)2]2} was determined from modeling chiT(T) by the Seiden expression (H = -2JSi.Sj) with J/kB = -8.00 K (-5.55 cm(-1); -0.65 meV) for [MnTPP]{Ni[S2C2H(CN)]2}, J/kB = -3.00 K (-2.08 cm(-1); -0.25 meV) for [MnTP'P]{Ni[S2C2(CN)2]2}, and J/kB = -122 K (-85 cm(-1)) for [MnTP'P]{Ni[S2C2(CN)2]2}. These observed negative J(intra)/kB values are indicative of antiferromagnetic coupling. These materials order as ferrimagnets at 5.5, 2.3, and 8.0 K, for [MnTPP]{Ni[S2C2H(CN)]2}, [MnTPP]{Ni[S2C2(CN)2]2}, and [MnTP'P]{Ni[S2C2(CN)2]2}, respectively, based upon the temperature at which maximum in the 10 Hz chi'(T) data occurs. [MnTP'P]{Ni[S2C2(CN)2]2} has a coercivity of 17,700 Oe and remanent magnetizations of 7250 emu Oe/mol at 2 K and 17 Oe and 850 emu Oe/mol at 5 K; hence, upon cooling it goes from being a soft magnet to being a very hard magnet.  相似文献   

20.
The formation of adducts of tris(pentafluorophenyl)borane with strongly coordinating anions such as CN(-) and [M(CN)(4)](2)(-) (M = Ni, Pd) is a synthetically facile route to the bulky, very weakly coordinating anions [CN[B(C(6)F(5))(3)](2)](-) and [M[CNB(C(6)F(5))(3)](4)](2-) which are isolated as stable NHMe(2)Ph(+) and CPh(3)(+) salts. The crystal structures of [CPh(3)][CN[B(C(6)F(5))(3)](2)] (1), [CPh(3)][ClB(C(6)F(5))(3)] (2), [NHMe(2)Ph](2)[Ni[CNB(C(6)F(5))(3)](4)].2Me(2)CO (4b.2Me(2)CO), [CPh(3)](2)[Ni[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (4c.2CH(2)Cl(2)), and [CPh(3)](2)[Pd[CNB(C(6)F(5))(3)](4)].2CH(2)Cl(2) (5c.2CH(2)Cl(2)) are reported. The CN stretching frequencies in 4 and 5 are shifted by approximately 110 cm(-1) to higher wavenumbers compared to the parent tetracyano complexes in aqueous solution, although the M-C and C-N distances show no significant change on B(C(6)F(5))(3) coordination. Zirconocene dimethyl complexes L(2)ZrMe(2) [L(2) = Cp(2), SBI = rac-Me(2)Si(Ind)(2)] react with 1, 4c or 5c in benzene solution at 20 degrees C to give the salts of binuclear methyl-bridged cations, [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] and [(L(2)ZrMe)(2)(mu-Me)](2)[M[CNB(C(6)F(5))(3)](4)]. The reactivity of these species in solution was studied in comparison with the known [[(SBI)ZrMe](2)(mu-Me)][B(C(6)F(5))(4)]. While the latter reacts with excess [CPh(3)][B(C(6)F(5))(4)] in benzene to give the mononuclear ion pair [(SBI)ZrMe(+).B(C(6)F(5))(4)(-)] in a pseudo-first-order reaction, k = 3 x 10(-4) s(-1), [(L(2)ZrMe)(2)(mu-Me)][CN[B(C(6)F(5))(3)](2)] reacts to give a mixture of L(2)ZrMe(mu-Me)B(C(6)F(5))(3) and L(2)ZrMe(mu-NC)B(C(6)F(5))(3). Recrystallization of [Cp' '(2)Zr(mu-Me)(2)AlMe(2)][CN[B(C(6)F(5))(3)](2)] affords Cp' '(2)ZrMe(mu-NC)B(C(6)F(5))(3) 6, the X-ray structure of which is reported. The stability of [(L(2)ZrMe)(2)(mu-Me)](+)X(-) decreases in the order X = [B(C(6)F(5))(4)] > [M[CNB(C(6)F(5))(3)](4)] > [CN[B(C(6)F(5))(3)](2)] and increases strongly with the steric bulk of L(2) = Cp(2) < SBI. Activation of (SBI)ZrMe(2) by 1 in the presence of AlBu(i)(3) gives extremely active ethene polymerization catalysts. Polymerization studies at 1-7 bar monomer pressure suggest that these, and by implication most other highly active ethene polymerization catalysts, are strongly mass-transport limited. By contrast, monitoring propene polymerization activities with the systems (SBI)ZrMe(2)/1/AlBu(i)(3) and CGCTiMe(2)/1/AlBu(i)(3) at 20 degrees C as a function of catalyst concentration demonstrates that in these cases mass-transport limitation is absent up to [metal] approximately 2 x 10(-5) mol L(-1). Propene polymerization activities decrease in the order [CN[B(C(6)F(5))(3)](2)](-) > [B(C(6)F(5))(4)](-) > [M[CNB(C(6)F(5))(3)](4)](2-) > [MeB(C(6)F(5))(3)](-), with differences in activation barriers relative to [CN[B(C(6)F(5))(3)](2)](-) of DeltaDeltaG = 1.1 (B(C(6)F(5))(4)(-)), 4.1 (Ni[CNB(C(6)F(5))(3)](4)(2-)) and 10.7-12.8 kJ mol(-)(1) (MeB(C(6)F(5))(3)(-)). The data suggest that even in the case of very bulky anions with delocalized negative charge the displacement of the anion by the monomer must be involved in the rate-limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号