首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Truman P  Uhlmann P  Stamm M 《Lab on a chip》2006,6(9):1220-1228
A novel single silicon thin film field-effect-transistor (FET) is developed for use as a sensor to monitor transport and chemical properties of liquids in microfluidic systems. The sensor elements which are compatible with existing (bio-)chemical sensor schemes based on ion-sensitive-field-effect-transistors (ISFET) can detect capillary filling speed and level in aqueous solutions. Using a transitor based detection scheme, this approach has the potential to enable high speed flow detection on large scales with high spatial resolution. The prototype devices presented in the present study have been fabricated by using a simple cost-efficient route for circuit board lithography. The thin film FET device characteristics are discussed and a theoretical model for liquid transport detection based on FETs is developed. Typical experimental data are also presented.  相似文献   

2.
Boron-doped (B-doped) single-walled (8, 0) carbon nanotubes (SWCNTs) are investigated using density functional theory (DFT) calculations as sensor models to detect the presence of cyanides, such as hydrogen cyanide (HCN) and cyanogen chloride (CNCl). Comparing the results of the intrinsic SWCNTs with HCN and CNCl, we discover that B-doped SWCNTs present a high sensitivity to the gaseous cyanide molecules, which is indicated by optimized geometry and electronic properties of these systems. On the basis of calculated results, we call attention to the fact that B-doped SWCNTs would be potential candidates for the detection of gaseous cyanide molecules. The present results provide guidance to experimental scientists in developing CNT-based chemical sensors.  相似文献   

3.
A reusable extended-gate field-effect transistor (FET) sensor with an 11-ferrocenyl-1-undecanethiol (11-FUT) modified gold electrode was developed for applying to enzyme immunoassay. It was found that the 11-FUT modified FET sensor detected a thiol compound 50 times or more repeatedly after a treatment with a 5% hydrogen peroxide solution. The gate-voltage shift of the FET sensor showed a fairly good linearity (R(2) = 0.998) within a range from 10(-2) to 10(-6) M on the concentration of 6-hydroxyl-1-hexanethiol, which is a thiol compound, at a Nernstian response of 58.5 mV/decade. The FET-based immunoassay was constructed by combining the 11-FUT modified-FET sensor with the enzyme-linked immunosorbent assay (ELISA), in which the enzyme chemistry of acetylcholinesterase (AChE) was used to generate a thiol compound. The 11-FUT modified FET sensor with an AC voltage at 1 MHz superimposed onto the reference electrode detected the AChE-catalyzed product corresponding to a serum concentration of interleukin 1beta from 10 to 5000 pg/mL. In addition, all measurements were successfully performed by using the same FET-sensor chip after a treatment with a 5% hydrogen peroxide solution.  相似文献   

4.
COVID-19 is a highly contagious human infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the war with the virus is still underway. Since no specific drugs have been made available yet and there is an imbalance between supply and demand for vaccines, early diagnosis and isolation are essential to control the outbreak. Current nucleic acid testing methods require high sample quality and laboratory conditions, which cannot meet flexible applications. Here, we report a laser-induced graphene field-effect transistor (LIG-FET) for detecting SARS-CoV-2. The FET was manufactured by different reduction degree LIG, with an oyster reef-like porous graphene channel to enrich the binding point between the virus protein and sensing area. After immobilizing specific antibodies in the channel, the FET can detect the SARS-CoV-2 spike protein in 15 min at a concentration of 1 pg/mL in phosphate-buffered saline (PBS) and 1 ng/mL in human serum. In addition, the sensor shows great specificity to the spike protein of SARS-CoV-2. Our sensors can realize fast production for COVID-19 rapid testing, as each LIG-FET can be fabricated by a laser platform in seconds. It is the first time that LIG has realized a virus sensing FET without any sample pretreatment or labeling, which paves the way for low-cost and rapid detection of COVID-19.  相似文献   

5.
Semiconducting single-walled carbon nanotubes (SWCNTs) emit fluorescence at near-infrared (NIR) wavelengths that are characteristic of the specific diameter and the chiral angle. While providing a convenient method for structural identification of semiconducting SWCNTs, NIR fluorescence of SWCNTs also offers a powerful approach for sensor development and in vivo or real-time imaging of biological systems.This article provides an introductory overview of the approaches to obtaining individually dispersed semiconducting SWCNTs with reasonably good purity, which is a critical step in acquiring NIR fluorescence spectra. It also summarizes the progress since 2002 in sensor design and applications in bioimaging in vitro and in vivo using NIR fluorescence of semiconducting SWCNTs.  相似文献   

6.
Tang N  Zheng J  Sheng Q  Zhang H  Liu R 《The Analyst》2011,136(4):781-786
A novel H(2)O(2) sensor based on enzymatically induced deposition of electroactive polyaniline (PANI) at a horseradish peroxide (HRP)/aligned single-wall carbon nanotubes (SWCNTs) modified Au electrode is fabricated, and its electrochemical behaviors are investigated. Electrochemical impedance spectroscopy of the sensor confirmed the formation of PANI on SWCNTs through the HRP catalytic reaction. Cyclic voltammograms of PANI/HRP/SWCNTs modified Au electrodes showed a pair of well-defined redox peaks of PANI with reduction peak potentials of 0.211 and oxidation peak potentials of 0.293 V in 0.1 M HOAc-NaOAc (pH 4.3) solution. The oxidation peak current response of PANI is linearly related to H(2)O(2) concentration from 2.5 μM to 50.0 μM with a correlation coefficient of 0.9923 and a sensitivity of 200 μA mM(-1). The detection limit is determined to be 0.9 μM with a signal-to-noise ratio of 3. Thus, the synergistic performance of the enzyme, the highly efficient polymerization of PANI, and the templated deposition of SWCNTs provided an extensive platform for the design of novel electrochemical biosensors.  相似文献   

7.
A new type of flow-through cell for an enzyme-modified field effect transistor (FET) is described. The cell makes it possible to use a FET without polymeric encapsulation and wire bonding. Electrical evaluation of a FET used with the flow cell demonstrates that the flow cell has no practical problems causing sensor malfunctions. The noise and drift levels of tbe FET sensor with the flow cell are shown to be similar to those of an epoxy-encapsulated FET sensor. The application of the flow cell with a urease-modified FET is described. Useful responses are obtained for 0.25–50 mg l?1 urea with relative standard deviations of <3%.  相似文献   

8.
ABSTRACT

The Langmuir monolayer is a special class of lyotropic liquid crystalline system wherein phase transition essentially depends on surface density, temperature and ion-content in the aqueous medium. The variety of surface phases can be transferred onto devices by the Langmuir–Blodgett (LB) technique. The Langmuir monolayer of pristine single-walled carbon nanotubes (SWCNTs) exhibited gas and liquid-like phases. The LB film of SWCNTs shows target surface pressure dependent interesting morphologies. The methane gas sensing using parallel alignment of SWCNTs was found to be better than that of randomly oriented SWCNTs. The SWCNTs can be functionalised chemically to enhance the ease of film processability and affinity towards analytes. These are essential parameters for the development of a sensor. In this article, we present our work on Langmuir monolayer and LB films of octadecylamine functionalised SWCNTs (ODACNTs) and its sensing application towards bio-analytes, e.g. L-aspartic acid and bovine serum albumin. The sensing performance of LB film of ODACNTs was compared with that of spin-coated films of ODACNTs. The sensing performance of LB films of ODACNTs indicated a potential platform for bio-sensing application.  相似文献   

9.
Herein, we report a non-enzymatic glucose sensor field-effect transistor (FET) based on vertically-oriented zinc oxide nanorods modified with iron oxide (Fe2O3-ZNRs). Compared with ZnO-based non-enzymatic glucose sensors, which show poor sensing performances, modification of ZnO with Fe2O3 dramatically enhances the sensing behavior of the fabricated non-enzymatic FET glucose sensor due to the excellent electrocatalytic nature of Fe2O3. The fabricated non-enzymatic FET sensor showed excellent catalytic activity for glucose detection under optimized conditions with a linear range up to 18 mM, detection limits down to ~ 12 μM, excellent selectivity, good reproducibility and long-term stability. Moreover, the fabricated FET sensor detected glucose in freshly drawn mouse whole blood and serum samples. The developed FET sensor has practical applications in real samples and the solution-based synthesis process is cost effective.  相似文献   

10.
A review is presented of microbiological sensors which are composed of micro-organisms immobilized in a membrane and coupled to a sensing element. Conventional microbiological sensors such as those for biochemical oxygen demand (BOD), ethanol and acetic acid are discussed briefly. Novel sensors are then described. The sensor for carbon dioxide is based on a chemoautotrophic bacterium, that for alcohol on cell membranes of the acetic acid bacteria, Gluoconabacter suboxydans. Sensors for BOD carbon dioxide are based on thermophilic bacteria. Finally, a microbial field effect transistor sensor (FET) for alcohol sensor is described. For all the sensors, the ranges of linear response and their long-term stabilities are reported.  相似文献   

11.
Surface-enhanced Raman scattering (SERS) spectra of single-walled carbon nanotubes (SWCNTs) on metal-coated filter paper are reported for the first time. Experimental results show that the metal-coated filter paper is very effective and active. The SERS spectrum not only shows that all Raman bands of SWCNTs in normal Raman scattering have been generally enhanced, but also shows many new bands, which characterize the structure of SWCNTs and the interaction between SWCNTs and silver/gold nanoparticles, arising from symmetry lowering and selection rule relaxing of SWCNTs induced by the silver/gold surface. In our case, it is difficult to separate the contributions of the electromagnetic and chemical mechanisms to the great enhancement of the Raman signal. The analysis shows that the SERS spectra of SWCNTs on the metal-coated filter paper provide convenience for probing the sample molecules with fine structures related to defects of SWCNTs, the diameter of SWCNTs, and the SERS mechanism of SWCNTs deposited on metal-coated filter paper. Moreover, this can be used as a probe technique for monitoring the synthesis quality of SWCNTs with significant higher sensitivity than other methods, which has promise of being a new technique for monitoring synthesis quality of SWCNTs.  相似文献   

12.
应用密度泛函理论研究了纯(8, 0)单壁碳纳米管(SWCNT)和B原子、N原子以及BN原子对掺杂的(8, 0) SWCNTs对硫化氢气体分子的传感性质. 计算结果表明, 与纯碳纳米管相比, B原子掺杂的SWCNT显示了对H2S分子的敏感性, 其几何结构和电子性质在吸附H2S分子后发生了显著变化; 而N原子和BN原子对的掺杂没有改善SWCNT对H2S分子的吸附性能, 因此我们建议B原子掺杂的SWCNT作为检测H2S分子的新型气相传感器.  相似文献   

13.
The possibility of fast, narrow-size/chirality nucleation of thin single-walled carbon nanotubes (SWCNTs) at low, device-tolerant process temperatures in a plasma-enhanced chemical vapor deposition (CVD) is demonstrated using multiphase, multiscale numerical experiments. These effects are due to the unique nanoscale reactive plasma chemistry (NRPC) on the surfaces and within Au catalyst nanoparticles. The computed three-dimensional process parameter maps link the nanotube incubation times and the relative differences between the incubation times of SWCNTs of different sizes/chiralities to the main plasma- and precursor gas-specific parameters and explain recent experimental observations. It is shown that the unique NRPC leads not only to much faster nucleation of thin nanotubes at much lower process temperatures, but also to better selectivity between the incubation times of SWCNTs with different sizes and chiralities, compared to thermal CVD. These results are used to propose a time-programmed kinetic approach based on fast-responding plasmas which control the size-selective, narrow-chirality nucleation and growth of thin SWCNTs. This approach is generic and can be used for other nanostructure and materials systems.  相似文献   

14.
A Quantum Mechanics (QM) is used for investigated the nature of metals transport and interaction with single-walled carbon nanotubes (SWCNTs) inter membranes. Metal species can be transported actively by a combination of SWCNT-membranes conducting channels that have been used for bio-molecular and detection. This study is based on the interaction of Na, Mg, Al, and Si with the structural features of SWCNTs in the ground state ab initio, HF theory and DFT calculation have been performed with the program Gaussian A7 package suite of programs. We used HF and DFT (B3LYP) method for calculation energy, chemical shift nucleus magnetic resonance and proportion thermodynamic by DFT-IR and DFT-NMR for RWCNT in absence and presence metals. The basis set used 6-31G and 6-31G* that increasing electronegativity metals increased the total energy. The proportion SWCNTs were changed by them. In this study presented a comprehensive on effects of metals on SWCNTs, which are on theirs electronic structure, and transfer of charge from metal to SWCNTs. The results are presented for T = 310 K, the temperature of human’s body.  相似文献   

15.
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.  相似文献   

16.
Guo LQ  Yin N  Nie DD  Gan JR  Li MJ  Fu FF  Chen GN 《The Analyst》2011,136(8):1632-1636
A simple, selective and sensitive turn-on fluorescent sensor for the detection of mercury(II) ion was developed using Sybr Green I as the signal reporter and SWCNTs as the quencher. Due to the affinity of SWCNTs towards ssDNA and organic dye, Sybr Green I, thymine-rich ssDNA and SWCNTs could form a self-assembly of three components, resulting in fluorescence quenching. Upon addition of another thymine-rich ssDNA and mercury(II) ion, formation of dsDNA via T-Hg(2+)-T base pairs enabled Sybr Green I to intercalate into the dsDNA, resulting in the restoration of fluorescence. SWCNTs were found to reduce the background signal and improve the analytical sensitivity. A linear relationship between the fluorescence intensity and the concentration of mercury(II) ion was observed in the range of 20-1250 nM (R = 0.9985) with a detection limit of 7.9 nM. The proposed method was applied to detect mercury(II) ion in tap water samples with good results.  相似文献   

17.
The development of new methods for the facile synthesis of hybrid nanomaterials is of great importance due to their importance in nanotechnology. In this work, we report a new method to deposit Au nanoparticles on the surface of single-walled carbon nanotubes (SWCNTs). Our approach consists of a one pot synthesis in which Au nanoparticles are generated in the presence of a photoreducing agent (Irgacure-2959) and carboxyl or polymer-functionalized SWCNTs (f-SWCNTs). We have observed that when carbon nanotubes are functionalized with polymers containing pendant amino groups, the latter can act as specific nucleation sites for well-dispersed deposition of Au nanoparticles. The surface coverage of the Au nanoparticles can be observed by transmission electron spectroscopy. These observations are compared to that of carboxyl functionalized SWCNTs, in which less surface coverage was observed. The f-SWCNT/Au nanocomposites were also characterized by UV-vis, infrared, and Raman spectroscopy and thermogravimetric analysis (TGA). This facile and effective route can be implemented to deposit gold nanoparticles on other surface-functionalized carbon nanotubes.  相似文献   

18.
Dam TV  Pijanowska D  Olthuis W  Bergveld P 《The Analyst》2003,128(8):1062-1066
In this paper, glucose is potentiometrically measured by using a specific field effect transistor, the EMOSFET. In this device, glucose oxidase is immobilized within a bovine serum albumin matrix, using glutaraldehyde. This layer is deposited on the top of an electroactive Os-polyvinylpyridine layer containing horseradish peroxidase, which is used as the gate material of the FET. The basic principle of the sensor is to measure the glucose concentration by means of measuring the change in the work function of the electroactive gate due to its redox reaction with the H2O2, generated by the reaction between glucose and glucose oxidase. The change in the work function can be detected as a change in the threshold voltage of the FET. Moreover, a measuring mode called "constant current potentiometry" has been applied to improve the sensitivity of the sensor. The sensitivity of the sensor working in this mode is found to be much higher than the Nernstian value. The experimental results show that the detection limit of the sensor can be tuned depending on the value of the applied current and the glucose oxidase concentration in the gate.  相似文献   

19.
Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped solution-processable single-wall carbon nanotubes(SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide(PDI)derivatives PDIN and PDINO.The Raman and X-ray photoelectron spectroscopy(XPS)measurement results illustrate the ndoped behavior of SWCNTs by PDIN/PDINO in the blend CIMs.The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT(PDI-CNT)composite CIMs,and the composite CIMs can regulate and down-shift the work function of cathode,reduce the charge recombination,improve the charge extraction rate and enhance photovoltaic performance of the OSCs.High power conversion efficiency(PCE)of 17.1%and 17.7%are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC71 BM respectively with the PDI-CNTcomposites CIMs.These results indicate that the ndoped SWCNT-containing composites,like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes,are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices.  相似文献   

20.
本文发展了一种基于纳米金介导生物沉积铂并以铂催化氢还原伏安法进行检测的高灵敏电化学免疫分析新方法。该方法采用夹心免疫分析模式,实现了人免疫球蛋白(HIgG)的测定。首先在聚苯乙烯微孔板中固定羊抗HIgG捕获抗体,HIgG捕获后,碱性磷酸酶标记的HIgG抗体修饰的纳米金探针通过与HIgG的形成的夹心复合物而结合在微孔板上。结合的碱性磷酸酶催化抗坏血酸磷酸酯底物水解产生抗坏血酸,后者在纳米金上介导下还原铂离子沉积于纳米金表面。沉积的金属铂用王水溶解并电富集于玻碳电极上。通过测定铂催化氢还原产生的阴极电流,可实现HIgG的高灵敏分析。催化氢还原电流与HIgG浓度对数在0.1~100ng/ml之间呈线性相关性,检测限达22pg/ml。由于铂催化氢还原的高灵敏度及纳米金介导的生物沉积放大反应,该法具有较高的分析灵敏度,且免疫分析微孔板模式使得该法可同时用于大量样品的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号