首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于3种肾上腺素对三联吡啶钌-三丙胺发光体系具有强烈抑制的特性, 建立了一种毛细管电泳分离-间接电致化学发光(CE-IECL)灵敏检测NE、脱氧肾上腺素和异丙肾上腺素的新方法, 并将该方法成功地应用于人尿样分析. 结果表明, 糖尿病肾病患者尿样中的NE含量显著比健康人的高.  相似文献   

2.
Sun J  Xu X  Wang C  You T 《Electrophoresis》2008,29(19):3999-4007
Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated. LODs of 3.3x10(-8) mol/L (0.16 fmol), 1.6x10(-7) mol/L (0.78 fmol) and 3.3x10(-8) mol/L (0.16 fmol) were obtained for methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine, respectively. For practical application, a liquid-liquid extraction with ethyl acetate procedure was developed for urine sample pretreatment and extraction efficiencies higher than 90% were obtained. The established simultaneous CE-EC/ECL was successfully applied for urine sample analysis.  相似文献   

3.
Liu YM  Cao JT  Tian W  Zheng YL 《Electrophoresis》2008,29(15):3207-3212
A novel method for the determination of norfloxacin (NOR) and levofloxacin (LVX) was developed by CE separation and electrochemiluminesence detection (ECL). The methods for capillary conditioning and the effect of solvent type were studied. Parameters affecting the CE and ECL were also investigated. Under the optimum conditions, the two analytes were well separated within 9 min. The LODs (S/N = 3) in standard solution are 4.8 x 10(-7) mol/L for NOR and 6.4 x 10(-7) mol/L for LVX, respectively. The precisions of intraday and interday are less than 4.2 and 8.1%, respectively. The LOQs (S/N = 10) in real human urine samples are 1.2 x 10(-6) mol/L for NOR and 1.4 x 10(-6) mol/L for LVX, respectively. The applicability of the proposed method was illustrated in the determination of NOR and LVX in human urine samples and the monitoring of pharmacokinetics for NOR. The recoveries of NOR and LVX at different levels in human urine samples were between 84.3 and 92.3%.  相似文献   

4.
Ding SN  Xu JJ  Chen HY 《Electrophoresis》2005,26(9):1737-1744
The major goal of this work was to develop a new solid-state electrochemiluminescence (ECL) detector suitable for capillary electrophoresis (CE). The detector was fabricated by coating a sol-gel derived zirconia (ZrO(2))-Nafion composite film on a graphite electrode, then the zirconia-Nafion modified electrode was immersed in tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3) (2+)) solution to immobilize this active chemiluminescence reagent. The voltammetric and ECL behaviors of the detector were investigated and optimized in tripropylamine solution. The ratio of 53% for zirconia in the zirconia-Nafion composite provided the highest luminescence intensity of immobilized Ru(bpy)(3) (2+). The ECL can maintain its stability very well in the phosphate solution in the period of 5-90 h when the solid-state ECL detector was immersed in the solution all the time. The optimum distance of capillary outlet to the solid-state ECL detector has been found to be ca. 50-80 microm for a 75 microm capillary. The effects of ionic strength and pH of ECL solution on peak height were investigated. The CE with solid-state ECL detector system was successfully used to detect tripropylamine, lidocaine, and proline. The detection limits (S/N = 3) were 5 x 10(-9) mol.L(-1) for tripropylamine, 1 x 10(-8) mol.L(-1) for lidocaine and 5 x 10(-6) mol.L(-1) for proline, and the linear ranges were from 1.0 x 10(-8) to 1.0 x 10(-5) mol.L(-1) for tripropylamine, 5.0 x 10(-7) mol.L(-1) to 1.0 x 10(-5) mol.L(-1) for lidocaine and 1.0 x 10(-5) to 1.0 x 10(-3) mol.L(-1) for proline, respectively.  相似文献   

5.
Cao W  Liu J  Yang X  Wang E 《Electrophoresis》2002,23(21):3683-3691
A new end-column electrochemiluminescence (ECL) detection technique coupling to capillary electrophoresis (CE) is characterized. A 300 microm diameter Pt working electrode was used to directly couple with a 75 microm inner diameter separation capillary without an electric field decoupler. The hydrodynamic cyclic voltammogram (CV) of Ru(bpy) 3 2+ showed that electrophoretic current did not affect the ECL reaction. The presence of high-voltage (HV) field only resulted in the shift of the ECL detection potential. The distance of capillary to electrode was an important parameter for optimizing detection performance as it determined the characteristics of mass transport toward the electrode and the actual concentration of Ru(bpy) 3 2+ in the detection region. The optimum distance of capillary to electrode was decided by the inner diameter of the capillary, too. For a 75 microm capillary, the working electrode should be placed away from the capillary outlet at a distance within the range of 220-260 microm. The effects of pH value of ECL solution and molecular structure of analytes on peak height and theoretical plate numbers were discussed. Using the 75 microm capillary, under the optimum conditions, the method provided a linear range for tripropylamine (TPA) between 1 x 10(-10) and 1 x 10(-5) mol/L with correlation coefficient of 0.998. The detection limit (signal-to-noise ratio S/N = 3) was 5.0 x 10(-11) mol/L. The relative standard deviation in peak height for eight consecutive injections was 5.6%. By this new technique lidocaine spiked in a urine sample was determined. The method exhibited the linear range for lidocaine from 5.0 x 10(-8) to 1.0 x 10(-5) mol/L with correlation efficient of 0.998. The limit of detection (S/N = 3) was 2.0 x 10(-8) mol/L.  相似文献   

6.
In this paper, CE coupled with electrochemiluminesence (ECL) detection using a 76‐μm Pt disk as working electrode was developed for nicotine (NIC) determination. The major metabolite of NIC is cotinine (COT), which has a similar tertiary amine structure to NIC. However, there is a carbonyl group attached in the structure of COT, which leads to the great decrease in ECL response. In order to improve the ECL response of COT, NaBH4 was used for carbonyl reduction. After reduction, NIC and COT were separated and detected by CE‐ECL. ECL response plotted with NIC concentration was linear between 5.0×10?7 and 5.0×10?5 mol/L (81–8100 μg/L), with LOD of 5.0×10?8 mol/L (8.1 μg/L). The developed CE‐ECL method was applied for NIC determination in urine and cigarette samples.  相似文献   

7.
X Zheng  Z Guo  Z Zhang 《Analytical sciences》2001,17(9):1095-1099
Based on a new electrogenerated chemiluminescence (ECL) analytical idea, this paper explains a sensitive and selective flow-injection ECL method using luminol for the determination of isoniazid, based on the sensitizing effect of isoniazid for the weak ECL emission of electrochemically oxidized luminol. Under the optimum experimental conditions, the relative ECL intensity was linear with isoniazid concentration in the range of 4.0 x 10(-8) mol/L to 8.0 x 10(-6) mol/L and with a detecting limit of 2.8 x 10(-8) mol/L.  相似文献   

8.
A novel method for the determination of ephedra alkaloids (methylephedrine and pseudoephedrine) was developed by electrophoresis capillary (CE) separation and electrochemiluminesence detection (ECL). The use of ionic liquid (1‐butyl‐3‐methylimidazolium tetrafluoroborate, BMIMBF4) improved the detection sensitivity markedly. The conditions for CE separation, ECL detection and effect of ionic liquid were investigated in detail. The two ephedra alkaloids with very similar structures were well separated and detected under the optimum conditions. The limits of detection (signal‐to‐noise ratio = 3) in standard solution were 1.8 × 10–8 mol/L for methylephedrine (ME) and 9.2 × 10–9 mol/L for pseudoephedrine (PSE). The limits of quantitation (signal‐to‐noise ratio = 10) in human urine samples were 2.6 × 10?7 mol/L for ME and 3.6 × 10–7 mol/L for PSE. The recoveries of two alkaloids at three different concentration levels in human urine samples were between 81.7 and 105.0%. The proposed method was successfully applied to the determination of ME and PSE in human urine and the monitoring of pharmacokinetics for PSE. The proposed method has potential in therapeutic drug monitoring and clinical analysis. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Fang L  Kang J  Yin XB  Yang X  Wang E 《Electrophoresis》2006,27(22):4516-4522
CE with electrochemiluminescence (ECL) detection technique was successfully applied for the chiral separation of a kind of class IA antiarrhythmic racemic drug. To the best of our knowledge, this is the first report of ECL detection used in chiral CE. To get better detection sensitivity and good enantioresolution at the same time, the conditions of capillary inlet and outlet buffer were systematically optimized. Unlike the traditional chiral separation method, the buffers we used in the capillary inlet and outlet differed from each other in terms of buffer pH, ionic strength, type of BGE as well as buffer composition. Under the optimum conditions, baseline enantioseparation and highly sensitive detection of the enantiomers were achieved. Wide linear relationship of each enantiomer was achieved in the range of 5 x 10(-7) to 2 x 10(-5) mol/L with relative coefficients of 0.996 and 0.997, respectively. The detection limits were estimated to be 8 x 10(-8) and 1.0 x 10(-7) mol/L (S/N = 3) for the enantiomers, respectively. In addition, a successful application of this new method to the chiral separation of the racemic drug in spiked plasma samples confirmed the validity and applicability of the chiral CE-ECL method.  相似文献   

10.
Liu YM  Wang CQ  Mu HB  Cao JT  Zheng YL 《Electrophoresis》2007,28(12):1937-1941
A rapid and sensitive method to detect three catecholamines, isoprenaline, epinephrine, and dopamine, by CE coupled with direct luminol-potassium periodate chemiluminescence (CL) detection is described. The conditions for CE separation and CL reaction were systematically optimized. Under the optimum conditions, the baseline separation of three catecholamines was achieved within 6.5 min. The LODs obtained in standard solution were 5.3 x 10(-8 )mol/L for isoprenaline, 4.7 x 10(-8 )mol/L for epinephrine, and 1.5 x 10(-7 )mol/L for dopamine. The RSD of the migration time and peak area were less than 1.8 and 3.6% (n = 5), respectively. The present method was applied to the determination of the dopamine in urine samples of cigarette smokers and nonsmokers. The results obtained indicate that there is a close relationship between the content of dopamine in human urine and the amount of cigarettes smoked daily; the level of dopamine in smokers is higher than in nonsmokers.  相似文献   

11.
A novel and sensitive method for the simultaneous determination of enoxacin and ofloxacin has been established using capillary electrophoresis (CE) coupled with electrochemiluminescence (ECL) detection based on the ECL enhancement of tri(2,2‐bipyridyl)ruthenium(II). The conditions for sample solvent type, CE separation and ECL detection were investigated systematically. The analytes were well separated and detected within 7 min. The limits of detection (S/N = 3) of enoxacin and ofloxacin are 9.0 × 10?9 and 1.6 × 10?8 mol/L, respectively. The precisions (RSD%) of intraday and interday are less than 2.1 and 4.0%, respectively. The limits of quantitation (S/N = 10) of enoxacin and ofloxacin are 3.2 × 10?7 and 5.4 × 10?7 mol/L in human urine samples and 4.1 × 10?7 and 6.9 × 10?7 mol/L in human serum samples, respectively. The recoveries of enoxacin and ofloxacin at different concentration levels in human urine, serum and eye drop samples are between 94.0 and 106.7%. The proposed method was successfully applied to the determination of the enoxacin and ofloxacin in human urine, serum and eye drop samples and the monitoring of pharmacokinetics of ofloxacin in human body. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Liu J  Yang X  Wang E 《Electrophoresis》2003,24(18):3131-3138
Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)3(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)3(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cmx25 micro m (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 micro A), with end-column Ru(bpy)3(2+) ECL detection. A 5 mmol/L Ru(bpy)3(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9x10(-7) mol/L and 7.6x10(-9) mol/L for Spd and Spm, respectively. Intraday and interday relative standard deviations of ECL peak intensities are less than 8%. The main advantages of this CE-ECL detection technique for polyamines analysis presented herein are the omission of chemical derivatization of the analytes and the high selectivity.  相似文献   

13.
Yang M  Liu C  Qian K  He P  Fang Y 《The Analyst》2002,127(9):1267-1271
The electrogenerated chemiluminescence (ECL) behavior of N-(4-aminobutyl)-N-ethylisoluminol (ABEI) was studied and it was found that ABEI could produce emission light when oxidized at a +1.0 V (vs. Ag/AgCl) potential in alkaline solution. The addition of H2O2 markedly improved the ECL sensitivity. The pH value of the solution as well as the H2O2 concentration and working potential all have influences on the ECL response. Under optimal conditions, ABEI can be detected in the range 1.3 x 10(-6)-6.5 x 10(-12) mol L(-1). A detection limit of 2.2 x 10(-12) mol L(-1) for ABEI was obtained at a signal-to-noise ratio of 3. ABEI was then used as a marker to label a known sequence oligonucleotide, which was used as a DNA probe for identifying a target ssDNA immobilized on a PPy modified electrode based on a specific hybridization reaction. The hybridization events were evaluated by the ECL measurements. The results showed that only a complementary sequence could form a double-stranded DNA with the DNA probe and give a strong ECL response. A three-base mismatch sequence and non-complementary sequence have no response. The intensity of the ECL was linearly related to the concentration of the complementary sequence in the range 9.6 x 10(-11)-9.6 x 10(-8) mol L(-1), the detection limit was 3.0 x 10(-11) mol L(-1).  相似文献   

14.
Sun X  Niu Y  Bi S  Zhang S 《Electrophoresis》2008,29(13):2918-2924
A novel method to detect ascorbic acid (AA) in individual rat hepatocyte cells was developed by combining CE with electrochemiluminescence (ECL) based on tris(2,2'-bipyridine) ruthenium(II) (Ru(bpy)(3)2+). A single cell, followed by 0.1% SDS as cell lysis solution, was injected into the inlet of the separation capillary by electromigration. After optimizing the analytical conditions, the RSDs of migration time and peak height were 0.38% and 2.6% for 1.0x10(-5) M AA (n=10), respectively. The linear range of AA was from 1.0x10(-8) to 5.0x10(-5) M with a correlation coefficient of 0.9979 and the LOD (S/N=3) was estimated to be 1.0x10(-8) M. This method has been successfully applied to determine AA in single rat hepatocytes and the amount of AA in seven rat hepatocytes ranged from 16 to 62 fmol. The above results demonstrated that CE coupled with ECL is convenient, sensitive, and will become an attractive alternative method for single-cell analysis.  相似文献   

15.
流动注射胶束电化学发光测定过氧化氢的研究   总被引:6,自引:0,他引:6  
建立了一种简易、快速检测过氧化氢的流动注射电化学发光法。本法基于铂丝阳极在 1.3 V(vs.Ag Cl/Ag)时 ,在含有 Na2 CO3 -Na HCO3 缓冲溶液的 KCl支持电解质中现场产生试剂 ,当注入过氧化氢溶液后即产生电化学发光。加入 Triton X-10 0形成的胶束能增强这一体系的发光强度。该法测定过氧化氢的线性范围为 1.0×10 -7~ 1.0× 10 -5 mol/L,对 4.0× 10 -7mol/L的过氧化氢进行 11次测定的相对标准偏差为 2 .6%。用这一方法对雨水中的过氧化氢进行了测定 ,结果满意。  相似文献   

16.
Lei R  Xu X  Yu F  Li N  Liu HW  Li K 《Talanta》2008,75(4):1068-1074
Quercetin greatly enhanced luminol electrochemiluminescence of quercetin in alkaline solution. When the concentration of luminol was 0.1 mol L(-1), the detection limit for quercetin was 2.0x10(-8) mol L(-1) with a linear range from 1.0x10(-7) to 2x10(-5) mol L(-1). The pH and buffer substantially affected ECL intensity. Quercetin was autoxidized in alkaline aqueous solution. The rate of autoxidation of quercetin in various pH buffers and borate concentrations were measured. Borate was found to inhibit quercetin autoxidation and compromise quercetin enhancement effect on luminol ECL to some extent. Two final autoxidation products were identified with LC-MS methods. Autoxidation process was associated with enhancement of ECL intensity. The ROS generated during quercetin autoxidation enhanced the ECL intensity.  相似文献   

17.
An electrogenerated chemiluminescence (ECL) method for the determination of pethidine, atropine, homatropine and cocaine is described. The optimum conditions were found to be similar for all of these compounds although the ECL emission intensity for cocaine was an order of magnitude lower than for pethidine due to their different chemical structures. Linear calibrations were obtained for all the compounds at pH 10 in borate buffer (0.05 mol l-1) at 1.3 V. Limits of detection of 6.8 x 10(-8), 2.2 x 10(-7), 3.2 x 10(-7) and 6.5 x 10(-7) mol l-1, respectively, were achieved for pethidine, atropine, homatropine and cocaine in standard solutions. Solid-phase extraction was used to separate the drugs from their matrix and the method was applied to the determination of spiked urine samples. The limits of quantitation for pethidine, atropine, homatropine and cocaine in urine were 1.0 x 10(-6), 2.0 x 10(-6), 2.0 x 10(-6) and 4.0 x 10(-6) mol l-1, respectively, with recoveries of between 90 and 110%.  相似文献   

18.
基于磷酸可待因对联吡啶钌在该电极上的电化学及其发光行为的增敏作用,建立了一种直接测定磷酸可待因的电化学发光新方法。在最佳实验条件下,磷酸可待因在1.0×10-4~4.0×10-6mol/L和4.0×10-6~2.0×10-7mol/L与相对发光强度呈线性关系,检出限为1.0×10-7mol/L(S/N=3)。连续测定4.0×10-7mol/l磷酸可待因5次,发光强度的RSD为2.7%。方法用于模拟尿样中磷酸可待因的测定,结果满意。  相似文献   

19.
Zheng X  Zhang Z  Guo Z  Wang Q 《The Analyst》2002,127(10):1375-1379
In this paper. it was found that the enhancing effect of hydrazine on the weak electrogenerated chemiluminescence (ECL) signal of the electrooxidation of luminol at a pre-anodized platinum electrode was stronger than that of hydrazine at a bare platinum electrode. Based on this finding and the combination of this finding with a flow-injection technique, a novel, sensitive and selective ECL method for hydrazine was developed. Under the optimum experimental conditions, the relative ECL intensity was linear with hydrazine concentration over the range 2.0 x 10(-8) - 5.0 x 10(-5) mol L(-1), with a detection limit of 6.0 x 10(-9) mol L(-1).  相似文献   

20.
The electrochemiluminescence (ECL) of Tb3+-enoxacin-Na2SO3 system (ENX system) and Tb3+-ofloxacin-Na2SO3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na2SO3, which is enhanced by Tb3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na2SO3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb3+, indicating that the emission is from the excited state of Tb3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 x 10(-10) -8.0 x 10(-7)mol l(-1) for ENX and 6.0 x 10(-10) -6.0 x 10(-7)mol l(-1) for OFLX, respectively. A theoretical limit of detection is 5.4 x 10(-11)mol l(-1) for ENX and 1.6 x 10(-10)mol l(-1) for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号