首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An elastomeric gel is a cross-linked polymer network swollen with a solvent, and certain gels can undergo large reversible volume changes as they are cycled about a critical temperature. We have developed a continuum-level theory to describe the coupled mechanical deformation, fluid permeation, and heat transfer of such thermally responsive gels. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model based on a Flory–Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical–mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. We have numerically implemented our theory in a finite element program. We show that our theory is capable of simulating swelling, squeezing of fluid by applied mechanical forces, and thermally responsive swelling/de-swelling of such materials.  相似文献   

3.
An elastomeric gel is a cross-linked polymer network swollen with a solvent (fluid). A continuum-mechanical theory to describe the various coupled aspects of fluid permeation and large deformations (e.g., swelling and squeezing) of elastomeric gels is formulated. The basic mechanical force balance laws and the balance law for the fluid content are reviewed, and the constitutive theory that we develop is consistent with modern treatments of continuum thermodynamics, and material frame-indifference. In discussing special constitutive equations we limit our attention to isotropic materials, and consider a model for the free energy based on a Flory-Huggins model for the free energy change due to mixing of the fluid with the polymer network, coupled with a non-Gaussian statistical-mechanical model for the change in configurational entropy—a model which accounts for the limited extensibility of polymer chains. As representative examples of application of the theory, we study (a) three-dimensional swelling-equilibrium of an elastomeric gel in an unconstrained, stress-free state; and (b) the following one-dimensional transient problems: (i) free-swelling of a gel; (ii) consolidation of an already swollen gel; and (iii) pressure-difference-driven diffusion of organic solvents across elastomeric membranes.  相似文献   

4.
High energy demand associated to the massive use of air conditioning systems requires careful consideration of passive cooling strategies, with evaporative cooling being recognized as a useful possibility for that purpose. One important factor that influences the performance of evaporative cooling systems is the media material that supports water evaporation process. In this work evaporative cooling capabilities of different building and textile materials were experimentally determined. The major purpose of the study was to select an evaporative cooling material to be used in a more complex passive cooling unit under research development. A test tunnel was constructed for this particular work and the behavior of several samples was analyzed. Results show that among the studied materials a polyester spacer fabric with honeycomb structure presents best performance.  相似文献   

5.
The rheology of concentrated coagulating suspensions is analysed on the basis of the following model: (i) at low shear rates, the shear is not distributed homogeneously but limited to certain shear planes; (ii) the energy dissipation during steady flow is due primarily to the overcoming of viscous drag by the suspended particles during motion caused by encounters of particles in the shear planes. This model is called the giant floc model.With increasing shear rate the distance between successive shear planes diminishes, approaching the suspended particles' diameter at average shear stresses of 88–117 Pa in suspensions of 78 µm particles (glass ballotini coated by a hydrophobic layer) in glycerol — water mixtures, at solid volume fractions between 0.35 and 0.40. Smaller particles form a more persistent coagulation structure. The average force necessary to separate two touching 78 µm particles is too large to be accounted for by London-van der Waels forces; thus coagulation is attributed to bridging connections between polymer chains protruding from the hydrophobic coatings.The frictional ratio of the glass particles in these suspensions is of the order of 10. Coagulation leads to build-up of larger structural units at lower shear rates; on doubling the shear rate the average distance between the shear planes decreases by a factor of 0.81 to 0.88. A inter-shear plane distance - A Hamaker constant - b radius of primary particles - f frictional ratio - F A attractive force between two particles - g acceleration due to gravity - H distance between the surfaces of two particles - K proportionality constant in power law - l fraction of distance by which a moving particle entrains its neighbours - l effective length of inner cylinder in the rheometer - M torque experienced by inner cylinder during measurements - n exponent in power law - n 0 ,n 1 ,n 2 constants in extended power law - NC hex number of contacts, per mm2, between particles in adjacent layers with an average degree of occupation, assuming a hexagonal arrangement of the particles within the layers - NC cub asNC hex, but with a cubical arrangement - p () d increase of slippage probability when the shear stress increases from to + d - q average coordination number of a particle in a coagulate - R i radius of inner cylinder of rheometer - R u radius of outer cylinder of rheometer - t i time during which particlei moves - t 0 time during which a particle bordering a shear plane moves from its rectilinear course, on meeting another particle - u angle between the direction of motion, and the line connecting the centers of two successive particles bordering a shear plane - V A attractive energy between two particles - x, y, z Cartesian coordinates:x — the direction of motion;y — the direction of the velocity gradient - y 0 ,z 0 y, z value of a particle meeting another particle, when both are far removed from each other - y 0 spread iny 0 values - —2/n - 0 capture efficiency - shear rate - average shear rate calculated for a Newtonian liquid - i distance by which particlei moves - 0 distance by which a particle bordering a shear plane moves from its rectilinear course, when it encounters another particle - square root of area occupied by a particle bordering a shear plane, in this plane - c energy dissipated during one encounter of two particles bordering a shear plane - p energy dissipated by one particle - energy dissipated per unit of volume and time during steady flow - viscosity - app calculated as if the liquid is Newtonian - 0 viscosity of suspension medium - PL lim - [] intrinsic viscosity - diff - diff, rel diff/ 0 - standard deviation of distribution ofy 0 values - shear stress - n average shear stress at the highest values applied - mass average particle diameter - n number average particle diameter - solid volume fraction - eff effective solid volume fraction in Dougherty-Krieger relation - max maximum solid volume fraction permitting flow - i angular velocity of inner cylinder in rheometer during measurements  相似文献   

6.
Mixtures of xanthan and guar gum in aqueous solution were studied in two flow situations: simple shear and porous media. In addition, solids transport in vertical annular flow of sand suspensions was explored. The zero shear rate viscosity of the solutions displayed a pronounced synergy: the viscosity of the mixture is higher than that of the polymer solutions in a wide range of relative concentrations of the two polymers, in agreement with previous literature. However, at relatively high shear rates, the viscosity approaches the value of the more viscous xanthan gum solutions at mass fractions of xanthan gum between 0.1 and 0.15, and the degree of synergy substantially decreases. Stress relaxation experiments in simple shear indicate that the polymer mixtures exhibit a well-defined yield stress after relaxation that is absent in solutions of pure polymers. In porous media flow experiments, a synergistic behavior mimicking the shear flow results was obtained for the polymer mixtures at low shear rates. However, at a critical shear rate, the apparent viscosity in porous media flows exceeds the shear viscosity due to the elongational nature of flow in the pores. The solids transport capacity in annular flows is well-represented by trends in shear viscosity and stress relaxation behavior. However, the lack of viscosity synergy at high shear rates limits the applicability of the mixtures as a way to improve solids suspension capacity in annular flows.  相似文献   

7.
The constitutive equation for a semiconcentrated fibre suspension in the Oldroyd-B fluid has been derived from a statistical model of such a suspension by employing the molecular theory for polymeric liquids. To circumvent theoretical difficulties in viscoelastic fluid mechanics, several simplified models are used to account for the interactions of fibres and polymer molecules. Some of material functions are calculated in terms of the constitutive equation. The project Supported by the University of Melbourne of Australia, the National Natural Science Foundation of China and Zhejiang Province  相似文献   

8.
Textile is one of the main components in the municipal waste which is to be diverted from landfill for material and energy recovery. As an initial investigation for energy recovery from textile residues, the combustion of cotton fabrics with a minor fraction of polyester was investigated in a packed bed combustor for air flow rates ranging from 117 to 1638 kg/m2 h (0.027–0.371 m/s). Tests were also carried out in order to evaluate the co-combustion of textile residues with two segregated waste materials: waste wood and cardboard.

Textile residues showed different combustion characteristics when compared to typical waste materials at low air flow rates below 819 kg/m2 h (0.186 m/s). The ignition front propagated fast along the air channels randomly formed between packed textile particles while leaving a large amount of unignited material above. This resulted in irregular behaviour of the temperature profile, ignition rate and the percentage of weight loss in the ignition propagation stage. A slow smouldering burn-out stage followed the ignition propagation stage. At air flow rates of 1200–1600 kg/m2 h (0.272–0.363 m/s), the bed had a maximum burning rate of about 240 kg/m2 h consuming most of the combustibles in the ignition propagation stage. More uniform combustion with an increased burning rate was achieved when textile residues were co-burned with cardboard that had a similar bulk density.  相似文献   


9.
Steady shear rheology of a dilute emulsion with viscoelastic inclusions is numerically investigated using direct numerical simulations. Batchelor's formulation for rheology of a viscous emulsion is extended for a viscoelastic system. Viscoelasticity is modeled using the Oldroyd-B constitutive equation. A front-tracking finite difference code is used to numerically determine the drop shape, and solve for the velocity and stress fields. The effective stress of the viscoelastic emulsion has three different components due to interfacial tension, viscosity difference (not considered here) and the drop phase viscoelasticity. The interfacial contributions – first and second normal stress differences and shear stresses – vary with Capillary number in a manner similar to those of a Newtonian system. However the shear viscosity decreases with viscoelasticity at low Capillary numbers, and increases at high Capillary numbers. The first normal stress difference due to interfacial contribution decreases with increasing drop phase viscoelasticity. The first normal stress difference due to the drop phase viscoelasticity is found to have a complex dependence on Capillary and Deborah numbers, in contrast with the linear mixing rule. Drop phase viscoelasticity does not contribute significantly to effective shear viscosity of the emulsion. The total first normal stress difference shows an increase with drop phase viscoelasticity at high Capillary numbers. However at low Capillary numbers, a non-monotonic behavior is observed. The results are explained by examining the stress field and the drop shape.  相似文献   

10.
In this study, we investigate the effect of geometrical imperfections on swelling-induced buckling patterns in gel films with a square lattice of holes. Finite element analysis is performed using the inhomogeneous field theory of polymeric gels in equilibrium proposed by Hong et al. (2009). Periodic units consisting of 2 × 2 and 10 × 10 unit cells are analyzed under a generalized plane strain assumption. Geometrical imperfections are introduced using randomly oriented elliptical holes. The 2 × 2 unit cells show that the resulting buckling patterns are sensitive to imperfections; three different buckling patterns are obtained, and the most dominant one is the diamond plate pattern observed in experiments, which cannot be described using the model without imperfections. The 10 × 10 unit cells reveal that random imperfections are responsible for inducing homogeneous transformation into the diamond plate pattern. Furthermore, domain wall formation is simulated using a 10 × 10 unit cell model containing two elliptic holes.  相似文献   

11.
By using the lattice model combined with finite element methods and statistical techniques, a numerical approach is developed to establish mechanical models of three-dimensional heterogeneous brittle materials. A special numerical code is introduced, in which a lattice model and statistical approaches are used to simulate the initial heterogeneity of material properties. The size of displacement-load step is adaptively determined so that only few elements would fail in each load step. When the tensile principal strain in an element exceeds the ultimate strain of this element, the element is considered broken and its Young's modulus is set to be very low. Some important behaviors of heterogeneous brittle materials are indicated using this code. Load-displacement curves and figures of three-dimensional fracture patterns are also numerically obtained, which are similar to those observed in laboratory tests.  相似文献   

12.
Using the Maxwell method, transfer equations describing molecular gas flows in viscous shock and hypersonic boundary layers are obtained. It is shown that, in contrast to the Navier-Stokes approximation, the kinetic model proposed makes it possible correctly to describe hypersonic flow around bodies under conditions of strong nonequilibrium of the internal and translational degrees of freedom of the gas particles.  相似文献   

13.
The dynamic mechanical behavior of suspensions of wood flour in polypropylene (PP) melts was investigated at varying filler concentrations. The main observed features were related to the viscoelastic nature of the polymer and to the filler aggregation, where the process of formation and destruction of particle clusters is governed by the polymer chain dynamics. The effect of the wood flour particles at low and large deformations was analyzed. The sample containing a wood flour concentration of 50% (by weight) showed a solid like behavior at low frequencies and was identified as the sample closer to a liquid-solid transition (LST). The values of the Newtonian viscosity obtained from sinusoidal oscillations at low frequencies were related to the concentration of filler in the suspensions. Moreover, a filler concentration scaling was found, that allows to obtain a master curve using the neat polymer as the reference and from which it is possible to calculate the dynamic mechanical behavior of all the suspensions. Apparently, for this system, the relaxation mechanisms of the neat polymer are not changed by the presence of the filler. However, the corresponding relaxation times are increased as a function of the filler concentration.  相似文献   

14.
Classical rheological methods are often insufficient to characterize and to differentiate the non-linear rheological behavior of polysaccharide systems such as carrageenan or starch. In this article the non-linear rheological method of characteristic functions is used to discriminate between the different polysaccharides. This method is based on the Fourier transform-rheology (FT-rheology). The response of a sample is decomposed using simple characteristic functions. We show that there are differences in the response of a number of carrageenan and starch samples, which are not distinguishable with classical rheometry.  相似文献   

15.
16.
Rheology and flow-induced morphology were studied in immiscible polypropylene (PP)/polystyrene (PS) blends with a droplet–matrix microstructure. Two reactive precursors, maleic anhydride grafted PP and amino terminated PS, were added during the melt-mixing process to form a graft copolymer. The effects of both the amount of compatibilizer and the shear history on the rheological and morphological behavior were investigated systematically. Small amplitude oscillatory experiments and scanning electron microscopy were used to study the phase morphology. Shear history has an important effect on the morphology of the uncompatibilized blends. The droplet size refines with increasing shear rate. The decrease of this effect with increasing degrees of in situ compatibilization is mapped out. The results are discussed in terms of interfacial tension and the interfacial coverage. It turns out that most of the conclusions that were previously obtained on physically compatibilized blends are also valid for chemically compatibilized ones.  相似文献   

17.
A general framework for rate-independent, small-strain, thermoinelastic material behaviour is presented, which includes thermo-plasticity and -damage as particular cases. In this context, strain localization and the development of material instabilities are investigated to highlight the roles of thermal effects and thermomechanical couplings. During a loading process, it is shown that two conditions play the essential roles and correspond to the singularity of the isothermal and the adiabatic acoustic tensors. Under quasi-static conditions, strain localization (in a classical sense) may occur when either of these two conditions is met. It involves a jump in temperature rate in the latter case, whereas temperature rate remains continuous in the former, but a discontinuity in the spatial derivatives of the heat flux must occur. This is consistent with the condition of stationarity of acceleration waves, which are shown to be homothermal and propagate with a velocity related to the eigenvalues of the isothermal acoustic tensor. A linear perturbation analysis further clarifies the above findings. In particular, for a quasi-static path of an infinite medium, failure of positive definiteness of either of the acoustic tensors corresponds to bifurcations in wave-like modes of arbitrary wave-length and infinite rate of growth. Under dynamic conditions, unbounded growth of perturbations is associated only to the short wavelength regime and corresponds to divergence growth or flutter phenomena relative to the isothermal acoustic tensor.  相似文献   

18.
Inkjet printing (IJP) synthesis has emerged as a useful technique for the fabrication of functional metal oxides in the fields of nanotechnology and materials science. In this paper, we will review the fundamental state-of-the-art principles of the special ink formulations used for IJP synthesis of functional metal oxides and the applications of these oxides.  相似文献   

19.
纺织结构复合材料冲击拉伸研究进展   总被引:2,自引:0,他引:2  
马丕波  蒋高明  高哲  夏栋 《力学进展》2013,43(3):329-357
纺织结构复合材料是以纺织结构作为增强体的一类复合材料, 其在一系列实际应用时往往要承受着高速冲击拉伸、冲击压缩等冲击载荷(冲击加载) 的作用. 因为纺织结构的整体性能, 纺织结构复合材料具有优异的抗冲击、抗分层与高损伤容限性能. 研究复合材料的冲击性能对于纺织结构复合材料的设计与应用具有指导作用. 本文详细介绍了纺织结构复合材料的发展, 纺织结构的种类及纺织结构复合材料的冲击拉伸性能实验与有限元分析研究情况, 同时也分析了纺织结构复合材料冲击拉伸破坏下的破坏机理研究进展, 并对纺织结构复合材料冲击拉伸性能研究的发展进行了展望.  相似文献   

20.
The theory of rodlike polymers in the nematic phase is now sufficiently well developed as to allow predictions of the rheological behaviour that qualitatively compare well with the experimental observations. One of the main results of the theory is the prediction that rodlike polymers are nematics of the tumbling type at low shear rates, whereas they become shear oriented at high rates: a nonlinear effect, which is absent in low molecular weight nematics. This aspect is here reviewed in an effort to highlight the intuitive aspects of the matter. First, the low shear-rate situation is discussed in order to investigate the conditions that determine the existence of a stationary solution as opposed to a periodic one (tumbling). Then, the high shear-rate range is considered, where the shear-oriented situation prevails under all conditions. The intermediate range of shear rates is the most interesting one for its peculiar rheological behavior.Delivered as a Keynote Lecture at the Golden Jubilee Conference of the British Society of Rheology and Third European Rheology Conference, Edinburgh, 3–7 September, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号