首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inviscid transonic flow past a symmetric airfoil having a curvature minimum in the middle is numerically investigated. It is shown that at zero angle of attack both symmetric and asymmetric steady-state flow patterns can exist on a certain freestream Mach number range Mmin < Mmax. On this range, the asymmetric flows are stable against small perturbations, whereas the symmetric flows are stable only if M does not coincide with a singular Mach number at which small variations in M or can result in flow restructuring.  相似文献   

2.
气相爆轰波在半圆形弯管中传播现象的实验研究   总被引:4,自引:1,他引:4  
对气相(2H2/O2/Ar系统)爆轰波在半圆形弯管中的传播现象进行实验研究。用烟迹膜记录了弯管中爆轰波的胞格结构,采用压电传感器测量了沿弯管内外母线指定点的压力时间曲线,得到了爆轰波沿弯管内、外母线的平均速度和胞格尺寸的变化。结果表明:当平面爆轰波进入弯管后,受壁面的几何形状作用,诱导激波阵面发生弯曲。沿诱导激波阵面,自内母线到外母线方向,激波强度逐渐增大。同时,爆轰波后的化学反应区也受到影响,胞格尺寸发生较明显的变化。在本文条件下,当初压p08.00kPa,受扰动的爆轰波在弯管出口下游仍恢复为强度不变的稳定爆轰。胞格记录的三波点迹线表明:受扰动的爆轰波在出口段发生了马赫反射。实验结果还表明:当p0降至5.33kPa,平面稳定爆轰波经过半圆形弯管后,其强度发生衰减并直至出现熄灭。  相似文献   

3.
This paper examines the linear hydrodynamic stability of an inviscid compound jet. We perform the temporal and the spatial analyses in a unified framework in terms of transforms. The two analyses agree in the limit of large jet velocity. The dispersion equation is explicit in the growth rate, affording an analytical solution. In the temporal analysis, there are two growing modes, stretching and squeezing. Thin film asymptotic expressions provide insight into the instability mechanism. The spatial analysis shows that the compound jet is absolutely unstable for small jet velocities and admits a convectively growing instability for larger velocities. We study the effect of the system parameters on the temporal growth rate and that of the jet velocity on the spatial growth rate. Predictions of both the temporal and the spatial theories compare well with experiment.Dedicated to the memory of Professor Tasos C. Papanastasiou  相似文献   

4.
We derive high-order corrections to a modulation theory for the propagation of internal gravity waves in a density-stratified fluid with coupling to the mean flow. The methodology we use allows for strong modulations of wavenumber and mean flow, extending previous approaches developed for the quasi-monochromatic regime. The wave mean flow modulation equations consist of a system of nonlinear conservation laws that may be hyperbolic, elliptic or of mixed type. We investigate the regularizing properties of the asymptotic correction terms in the case when the system becomes unstable and ill-posed due to a change of type (loss of hyperbolicity). A linear analysis reveals that the regularization by the added correction terms does so by introducing a short-wave cut-off of the unstable wavenumbers. We perform various numerical experiments that confirm the regularizing properties of the correction terms, and show that the growth of unstable modes is tempered by nonlinearity. We also find an excellent agreement between the solution of the corrected modulation system and the modulation variables extracted from the numerical solution of the nonlinear Boussinesq equations.  相似文献   

5.
In this paper, a numerical method with high order accuracy and high resolution was developed to simulate the Richtmyer-Meshkov(RM) instability driven by cylindrical shock waves. Compressible Euler equations in cylindrical coordinate were adopted for the cylindrical geometry and a third order accurate group control scheme was adopted to discretize the equations. Moreover, an adaptive grid technique was developed to refine the grid near the moving interface to improve the resolution of numerical solutions. The results of simulation exhibited the evolution process of RM instability, and the effect of Atwood number was studied. The larger the absolute value of Atwood number, the larger the perturbation amplitude. The nonlinear effect manifests more evidently in cylindrical geometry. The shock reflected from the pole center accelerates the interface for the second time, considerably complicating the interface evolution process, and such phenomena of reshock and secondary shock were studied. The project supported by the National Natural Science Foundation of China (10176033, 10135010 and 90205025). The English text was polished by Yunming Chen.  相似文献   

6.
The features of the flow in the zone of interaction between a plane bow shock and an oblique shock or an isentropic compression wave are studied. The limiting interaction regimes are considered analytically, the similarity conditions are formulated, and the limiting values of the flow parameters are determined for the high-pressure compressed gas jet formed in the interference and for the body surface. On the basis of a numerical solution of the Euler equations the flow specifics in the neighborhood of the spreading line on the body are determined and ways of reducing the dynamic and thermal loadings on this line are proposed.  相似文献   

7.
陈霄  董刚  蒋华  吴锦涛 《爆炸与冲击》2017,37(2):229-236
激波诱导火焰失稳是实际中常见的现象,为深入研究火焰失稳特性,采用三维单步化学反应的Navier-Stokes方程和9阶weighted essentially non-oscillatory (WENO)的高精度格式,对不同马赫数的入射激波及其反射激波多次诱导正弦型预混火焰界面失稳的现象进行了三维数值模拟,并对计算结果的可靠性进行了验证。研究结果显示,在激波的多次作用下,火焰界面的演变过程主要受Richtmyer-Meshkov (RM)不稳定特性和化学反应特性的双重影响,且随着入射激波强度的增强,上述2种特性均得到进一步强化。为构造体现反应性RM不稳定特性的参数,根据火焰界面混合区平均涡量和化学反应速率,提出了表征界面受不稳定性和化学反应影响的量纲一参数。通过分析发现,在同一入射激波强度下,该参数的对数形式随入射激波和反射激波的多次作用呈基本相同的线性增长趋势;对不同马赫数的入射激波,该参数对数形式的线性增长率也基本一致。这样的变化表明该量纲一参数能够反映反应性RM不稳定过程中火焰界面发展的内在规律。  相似文献   

8.
9.
The monotonous instability of the adsorption front formed in a two-component gas filtered vertically through a fixed bed of adsorbent is demonstrated. A threshold value of the Archimedes adsorption criterion is calculated and the corresponding critical gas flow is considered.  相似文献   

10.
A thin‐tube vortex method is developed to investigate the intrinsic instability within a counter‐rotating vortex pair system and the effects from the core size and the wavenumbers (or wavelengths). The numerical accuracy and the advantages of the scheme are theoretically estimated. A nearest‐neighbour‐image method is employed in this three‐dimensional vortex simulation. Agreement with Crow's instability analysis has been achieved numerically for the long‐wave cases. A short‐wave instability for the zeroth radial mode of bending instability has also been found using the thin‐tube vortex simulations. Then, the combinations of long‐ and short‐wave instability are investigated to elucidate the non‐linear effects due to the interactions of two different modes. It is shown that instability is enhanced if both long‐ and short‐wave instabilities occur simultaneously. Although the method used in the paper is not capable of including effects such as axial flow, vortex core deformation and other complicated viscous effects, it effectively predicts and clarifies the first‐order factor that dominates the sinusoidal instability behaviour in a vortex pair. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
We study the simultaneous one-dimensional flow of water and oil in a heterogeneous medium modelled by the Buckley-Leverett equation. It is shown both by analytical solutions and by numerical experiments that this hyperbolic model is unstable in the following sense: Perturbations in physical parameters in a tiny region of the reservoir may lead to a totally different picture of the flow. This means that simulation results obtained by solving the hyperbolic Buckley-Leverett equation may be unreliable.Symbols and Notation f fractional flow function varying withs andx - value off outsideI - value off insideI - local approximation off around¯x - f ,f + values of - f j n value off atS j n andx j - g acceleration due to gravity [ms–2] - I interval containing a low permeable rock - k dimensionless absolute permeability - k * absolute permeability [m2] - k c * characteristic absolute permeability [m2] - k ro relative oil permeability - k rw relative water permeability - L * characteristic length [m] - L 1 the space of absolutely integrable functions - L the space of bounded functions - P c dimensionless capillary pressure function - P c * capillary pressure function [Pa] - P c * characteristic pressure [Pa] - S similarity solution - S j n numerical approximation tos(xj, tn) - S 1, S2,S 3 constant values ofs - s water saturation - value ofs at - s L left state ofs (wrt. ) - s R right state ofs (wrt. ) - s s for a fixed value of in Section 3 - T value oft - t dimensionless time coordinate - t * time coordinate [s] - t c * characteristic time [s] - t n temporal grid point,t n=n t - v * total filtration (Darcy) velocity [ms–1] - W, , v dimensionless numbers defined by Equations (4), (5) and (6) - x dimensionless spatial coordinate [m] - x * spatial coordinate [m] - x j spatial grid piont,x j=j x - discontinuity curve in (x, t) space - right limiting value of¯x - left limiting value of¯x - angle between flow direction and horizontal direction - t temporal grid spacing - x spatial grid spacing - length ofI - parameter measuring the capillary effects - argument ofS - o dimensionless dynamic oil viscosity - w dimensionless dynamic water viscosity - c * characteristic viscosity [kg m–1s–1] - o * dynamic oil viscosity [kg m–1s–1] - w * dynamic water viscosity [k gm–1s–1] - o dimensionless density of oil - w dimensionless density of water - c * characteristic density [kgm–3] - o * density of oil [kgm–3] - w * density of water [kgm–3] - porosity - dimensionless diffusion function varying withs andx - * dimensionless function varying with s andx * [kg–1m3s] - j n value of atS j n andx j This research has been supported by VISTA, a research cooperation between the Norwegian Academy of Science and Letters and Den norske stats oljeselskap a.s. (Statoil).  相似文献   

12.
采用高精度的多介质Ghost-Fluid方法,对马赫数为1.15的激波分别作用于单模大扰动Air-CO2、Air-SF6、Air-N2和Air-He界面后的Richtmyer-Meshkov不稳定现象进行了数值研究,得到了不同时刻扰动界面的演化图像,给出了流场的密度等值线和密度纹影图,同实验结果吻合较好。给出了界面的扰动增长随时间变化的情况,并同理论模型进行了对比。对激波从轻气体进入重气体的情况,扰动增长可采用Sadot模型描述线性阶段和早期非线性阶段;对于弱激波同密度接近的气体界面的相互作用,线性阶段时间较长,可用线性模型描述。  相似文献   

13.
界面不稳定性, 特别是Richtmyer–Meshkov (RM) 不稳定性, 是流体
力学中一项重要的研究内容, 无论在学术研究领域还是工程应用领域都有着
重要的研究价值和应用背景. RM 不稳定性问题自提出以来, 得到了学术界
广泛的关注, 其研究无论是在实验方法、数值模拟还是在理论分析方面都取
得了很大的进展. 在激波管中开展激波与界面相互作用的实验研究, 即研究
界面初始扰动在激波诱导下的演化规律, 是目前研究RM 不稳定性的重要手
段. RM 不稳定性实验研究包括3 个部分, 分别是激波的产生、界面的形成
以及流场的观测. 综述了RM 不稳定性的实验研究进展, 并针对目前研究的
局限性提出了RM 不稳定性今后实验研究的重点和方向: 汇聚激波作用下界
面不稳定性的发展规律; 激波冲击下多种形状及大振幅界面的演化机理; 三
维界面的RM 不稳定性发展规律; 可压缩湍流的形成与混合机理.   相似文献   

14.
实验采用压力传感器测量了指定点压力时间曲线。数值模拟基于二维反应欧拉方程和基元反应模型,采用二阶附加半隐的龙格-库塔法和5阶WENO格式分别离散时间和空间导数项,获得了指定点数值压力时间曲线。理论分析基于爆轰理论和激波动力学,分析了气相爆轰波反射过程所涉及的复杂波系演变并获得了反射激波速度。结果表明:本文数值模拟和理论计算定性上重复并解释了实验现象。气相爆轰波在右壁面反射后,右行稀疏波加速反射激波。其加速原因是:尽管激波波前声速减小,但激波马赫数增大,波前气流速度减小。在低初压下,可能还由于爆轰波后未反应或部分反应气体的作用,导致反射激波加速幅度比高初压下大。  相似文献   

15.
The shock instability phenomenon is a well‐known problem for hypersonic flow computation by the shock‐capturing Roe scheme. The pressure checkerboard is another well‐known problem for low‐Mach‐number flow computation. The momentum interpolation method (MIM) is necessary for low‐Mach‐number flows to suppress the pressure checkerboard problem, and the pressure‐difference‐driven modification for cell face velocity can be regarded as a version of the MIM by subdividing the numerical dissipation of the Roe scheme. In this paper, MIM has been discovered through analysis and numerical tests to have the most important function in shock instability. MIM should be completely removed for nonlinear flows. However, the unexpected MIM is activated on the cell face nearly parallel to the flow for the high‐Mach‐number flows or low‐Mach‐number cells in numerical shock. Therefore, MIM should be retained for low‐Mach‐number flows and be completely removed for high‐Mach‐number flows and low‐Mach‐number cells in numerical shock. For such conditions, two coefficients are designed on the basis of the local Mach number and a shock detector. Thereafter, the improved Roe scheme is proposed. This scheme considers the requirement of MIM for incompressible and compressible flows, and is validated for good performance of numerical tests. An acceptable result can also be obtained with only the Mach number coefficient for general practical computation. Therefore, the objective of decreasing rather than increasing numerical dissipation to cure shock instability can be achieved with simple modification. Moreover, the mechanism of shock instability has been profoundly understood, in which MIM plays the most important role, although it is not the only factor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Parabolized stability equations (PSE) approach is used to investigate prob-lems of secondary instability in supersonic boundary layers. The results show that the mechanism of secondary instability does work, whether the 2-D fundamental disturbance is of the first mode or second mode T-S wave. The variation of the growth rates of the 3-D sub-harmonic wave against its span-wise wave number and the amplitude of the 2-D fundamental wave is found to be similar to those found in incompressible boundary layers. But even as the amplitude of the 2-D wave is as large as the order 2%, the maximum growth rate of the 3-D sub-harmonic is still much smaller than the growth rate of the most unstable second mode 2-D T-S wave. Consequently, secondary instability is unlikely the main cause leading to transition in supersonic boundary layers.  相似文献   

17.
18.
基于Navier-Stokes方程组,采用可压缩多介质黏性流动和湍流大涡模拟程序MVFT (multi-viscousflow and turbulence),模拟了均匀流场与初始密度呈现高斯函数分布的非均匀流场中马赫数为1.25的非平面激波加载初始扰动air/SF6界面的Richtmyer-Meshkov (RM)不稳定性现象。数值模拟结果表明,初始流场非均匀性将会影响非平面激波诱导的RM不稳定性演化过程。反射激波加载前,非平面激波导致的界面扰动振幅随着流场非均匀性增强而增大;反射激波加载后,非均匀流场与均匀流场条件下的界面扰动振幅差异有所减小。进一步,定量分析流场中环量分布及脉动速度统计量揭示了前述规律的原因。此外,还与平面激波诱导的RM不稳定性进行了简单对比,发现由于非平面激波波阵面区域的涡量与激波冲击界面时产生的涡量的共同作用,使得非平面激波与平面激波诱导的界面失稳过程存在差异。  相似文献   

19.
A theory for linear surface gravity waves on a semi-infinite layer of viscoelastic fluid described by a Jeffrey model is presented. Results are given for the decay rate and the phase velocity as a function of the parameters of the fluid: a nondimensional time constant, and a ratio of the retardation time to the relaxation time. At small wave numbers the behavior is Newtonian. In other cases depending on the nondimensional parameters, a number of possible other behaviors exist. The influence of the non-dimensional parameters on the growth rate of Rayleigh-Taylor instability is also discussed.  相似文献   

20.
This paper is concerned with a numerical study of the three-dimensional Honji instability that can arise in an oscillatory flow impinging on a circular cylinder. It is well known that when the fluid motion far from the cylinder is perpendicular to its axis then the flow is liable to a three-dimensional breakdown via this instability which initially appears as an axially periodic mushroom-like structure attached to the surface of the cylinder. Here the focus is on examining the Honji instability under an oblique inflow. The obliqueness of the free stream is represented by an angle of attack through introducing an axial flow component. It is found that the Honji mode is suppressed by increasing the axial flow component, and when this component is sufficiently large the instability mechanism is no longer operative so that all that remains is a featureless two-dimensional columnar flow. At smaller values of angle of attack, though the Honji structure remains, it is deformed by the axial flow component. The developed two-layer near-cylinder vortical structures can be related to the energy and momentum transfer between the two layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号