首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of chloranilic acid (H2ca) with [Os(bpy)2 Br2] (bpy = 2,2'-bipyridine) affords a dinuclear complex of type [{Os(bpy)2}2 (ca)]2+, isolated as the perchlorate salt. A similar reaction of H2ca with [Os(PPh3)2 (pap)Br2] (pap = 2-(phenylazo)pyridine) affords a dinuclear complex of type [{Os(PPh3)2 (pap)}2 (ca)]2+ (isolated as the perchlorate salt) and a mononuclear complex of type [Os(PPh3)2 (pap)(ca)]. Reaction of H2ca with [Os(PPh3)2(CO)2(HCOO)2] gives a dinuclear complex of type [{Os(PPh3)2(CO)2}2 (r-ca)], where r-ca is the two electron reduced form of the chloranilate ligand. The structures of the [{Os(PPh3)2 (pap)}2 (ca)](ClO4)2, [Os(PPh3)2 (pap)(ca)], and [{Os(PPh3)2(CO)2}2 (r-ca)] complexes have been determined by X-ray crystallography. In the [{Os(bpy)2}2 (ca)]2+ and [{Os(PPh3)2 (pap)}2 (ca)]2+ complexes, the chloranilate dianion is serving as a tetradentate bridging ligand. In the [Os(PPh3)2 (pap)(ca)] complex, the chloranilate dianion is serving as a bidentate chelating ligand. In the [{Os(PPh3)2(CO)2}2 (r-ca)] complex, the reduced form of the chloranilate ligand (r-ca(4-)) is serving as a tetradentate bridging ligand. All the four complexes are diamagnetic and show intense metal-to-ligand charge-transfer transitions in the visible region. The [Os(PPh3)2 (pap)(ca)] complex shows an Os(II)-Os(III) oxidation, followed by an Os(III)-Os(IV) oxidation on the positive side of a standard calomel electrode. The three dinuclear complexes show two successive oxidations on the positive side of SCE. The mixed-valent Os(II)-Os(III) species have been generated in the case of the two chloranilate-bridged complexes by coulometric oxidation of the homovalent Os(II)-Os(II) species. The mixed-valent Os(II)-Os(III) species show intense intervalence charge-transfer transitions in the near-IR region.  相似文献   

2.
1H NMR spectroscopy and fluorescent intercalator displacement (FID) assays have been used to investigate the DNA-binding abilities of two series of dinuclear polypyridyl ruthenium(II) complexes of the form [{Ru(L)2}2(mu-BL)]4+ {L = 2,2'-bipyridine (bpy), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), or 4,7-dimethyl-1,10-phenanthroline (Me2phen); BL = 2,2'-bipyrimidine (bpm) or 1,4,5,8,9,12-hexaazatriphenylene (HAT)}. Preliminary FID surveys of these metal complexes against a variety of different oligonucleotides revealed that those complexes based upon the HAT bridging ligand induced greater fluorescence decreases in dye-bound DNA than did their bpm-bridged counterparts, suggesting a higher binding affinity by the HAT-bridged species. Furthermore, the greatest fluorescence decreases were typically observed in an oligonucleotide featuring a six-base hairpin loop. The apparent binding affinity of the metal complexes was also found to be a function of the stereochemistry and identity of the terminal ligands of the complex. The meso (DeltaLambda) stereoisomer generally induced greater fluorescence decreases than did either enantiomer (DeltaDelta or LambdaLambda), phen-based terminal ligands performed better than bpy-based terminal ligands, and those terminal ligands with methyl substituents demonstrated stronger apparent binding than did their non-methylated analogues. NMR experiments on meso-[{Ru(phen)2}2(mu-HAT)]4+ and meso-[{Ru(Me2phen)2}2(mu-HAT)]4+ demonstrated that both complexes bound with high affinity to the six-base hairpin oligonucleotide at the stem-loop interface and provided evidence to support stronger binding by the methylated species. meso-[{Ru(phen)2}2(mu-HAT)]4+ was found to bind poorly to duplex DNA and smaller four-base hairpin loops in FID and NMR experiments, whereas FID data suggest that the methylated analogue binds relatively strongly to most oligonucleotide sequences (the four- and six-base hairpins in particular). These results demonstrate that binding affinity can come at the expense of selectivity, with meso-[{Ru(phen)2}2(mu-HAT)]4+ proving to be an efficient compromise between the two as a high-affinity DNA hairpin probe.  相似文献   

3.
A series of mono-, di-, and tetranuclear homo/heterometallic complexes of Ru(II) and Os(II) based on the bridging ligand dppz(11-11')dppz (where dppz = dipyrido[3,2-a:2',3'-c]phenazine) (BL) have been synthesized and characterized. This bridging ligand is a long rigid rod with only one rotational degree of freedom and provides complete conjugation between the chromophores. The complexes synthesized are of general formula [(bpy)(2)Ru-BL](2+), [(phen)(2)/(bpy)(2)M-BL-M(bpy)(2)/(phen)(2)](4+) (M = Ru(II) and Os(II)), [(bpy)(2)Ru-BL-Os(bpy)(2)](4+), and [((bpy)(2)Ru-BL)(3)M](8+). Detailed (1)H NMR studies of these complexes revealed that each chiral center does not influence its neighbor because of the long distance between the metal centers and the superimposed resonances of the diastereoisomers, which allowed the unambiguous assignment of the signals, particularly for homonuclear complexes. Concentration-dependent (1)H NMR studies show molecular aggregation of the mono- and dinuclear complexes in solution by pi-pi stacking. Electrospray mass spectrometry data are consistent with dimerization of mono- and dinuclear complexes in solution. Electrochemical studies show oxidations of Ru(II) and Os(II) in the potential ranges +1.38 to +1.40 and +0.92 to +1.01 V, respectively. The bridging ligand exhibits two one-electron reductions, and it appears that the added electrons are localized on the phenazene moieties of the spacer. All of these complexes show strong metal-to-ligand charge-transfer (MLCT) absorption and (3)MLCT luminescence at room temperature. Quantum yields have been calculated, and the emission lifetimes of all complexes have been measured by laser flash photolysis experiments. The luminescence intensity and lifetime data suggest that the emission due to the Ru center of the heteronuclear complexes is strongly quenched (>90%) compared to that of the corresponding model complexes. This quenching is attributed to intramolecular energy transfer from the Ru(II) center to the Os(II) center (k = (3-5) x 10(7) s(-1)) across the bridging ligand.  相似文献   

4.
This work describes a study of Ru(II) and Os(II) polypyridyl complexes of the symmetrical, fused-aromatic bridging ligand dibenzoeilatin (1). The synthesis, purification, and structural characterization by NMR of the mononuclear complexes [Ru(bpy)(2)(dbneil)](2+) (2), [Ru(tmbpy)(2)(dbneil)](2+) (3), and [Os(bpy)(2)(dbneil)](2+) (4), the homodinuclear complexes [[Ru(bpy)(2)](2)[micro-dbneil]](4+) (5), [[Ru(tmbpy)(2)](2)[micro-dbneil]](4+) (6), and [[Os(bpy)(2)](2)[micro-dbneil]](4+) (7), and the heterodinuclear complex [[Ru(bpy)(2)][micro-dbneil][Os(bpy)(2)]](4+) (8) are described, along with the crystal structures of 4, 6, and 7. Absorption spectra of the mononuclear complexes feature a low-lying MLCT band around 600 nm. The coordination of a second metal fragment results in a dramatic red shift of the MLCT band to beyond 700 nm. Cyclic and square wave voltammograms of the mononuclear complexes exhibit one reversible metal-based oxidation, as well as several ligand-based reduction waves. The first two reductions, attributed to reduction of the dibenzoeilatin ligand, are substantially anodically shifted compared to [M(bpy)(3)](2+) (M = Ru, Os), consistent with the low-lying pi orbital of dibenzoeilatin. The dinuclear complexes exhibit two reversible, well-resolved, metal-centered oxidation waves, despite the chemical equivalence of the two metal centers, indicating a significant metal-metal interaction mediated by the conjugated dibenzoeilatin ligand. Luminescence spectra, quantum yield, and lifetime measurements at room temperature in argon-purged acetonitrile have shown that the complexes exhibit (3)MLCT emission, which occurs in the IR-region between 950 and 1300 nm. The heterodinuclear complex 8 exhibits luminescence only from the Ru-based fragment, the intensity of which is less than 1% of that observed in the corresponding homodinuclear complex 5; no emission from the Os-based unit is observed, and an intramolecular quenching constant of k(q) > or = 3 x10(9) s(-)(1) is evaluated. The nature of the quenching process is briefly discussed.  相似文献   

5.
Three new terpyridine-based dinuclear complexes, [(tpy)Ru(azotpy)Ru(tpy)]4+ (tpy = 2,2':6',2'-terpyridine, azotpy = bis[2,6-bis(2-pyridyl)-4-pyridyl]diazene), [(tpy)Os(azotpy)Os(tpy)]4+, and [(tpy)Ru(azotpy)Os(tpy)]4+ were prepared and their electrochemical and photophysical properties investigated. The bridging ligand, azotpy, in these complexes is reduced at less negative potentials than the unsubstituted tpy ligand. These complexes exhibit absorption bands due to the metal-to-ligand charge-transfer transitions both to the unsubstituted tpy ligand and the bridging azotpy ligand, the latter absorption being observed at the lower energy side of the former. These observations are consistent with the lower lying pi* level of the azotpy ligand than that of the tpy ligand. These complexes are nonluminescent, since the excited electron is trapped in this lower lying pi* level of the azotpy ligand in the excited state. Reduction of this bridging ligand by constant potential electrolysis renders the shape of absorption spectra for these complexes nearly identical to those of the parent complexes, [M(tpy)2]2+ (M = Ru, Os). In this reduced state, the homodinuclear Os complex becomes luminescent at room temperature, whereas the homodinuclear Ru complex becomes luminescent at 77 K, thus establishing their photoswitching behavior. The reduced heterodinuclear complex exhibits luminescence from the Os center, which is sensitized by the Ru center in the same molecule as evidenced by the excitation spectra. Thus, the intramolecular energy transfer can be switched on and off by the redox reaction of the bridging component.  相似文献   

6.
The intervalence charge transfer (IVCT) properties of the mixed-valence forms of the diastereoisomers of the dinuclear [[Ru(bpy)2](mu-HAT)[M(bpy)2]]5+ (M = Ru or Os) complexes and the trinuclear heterochiral [[Ru(bpy)2]2[Os(bpy)2](mu-HAT)]n+ (n = 7, 8; HAT = 1,4,5,8,9,12-hexaazatriphenylene; bpy = 2,2'-bipyridine) species display a marked dependence on the nuclearity and extent of oxidation of the assemblies, while small differences are also observed for the diastereoisomers of the same complex in the dinuclear cases. The mixed-valence heterochiral [[Ru(bpy)2]2[Os(bpy)2](mu-HAT)]n+ (n = 7, 8) forms exhibit IVCT properties that are intermediate between those of the diastereoisomeric forms of the localized hetero-dinuclear complex [[Ru(bpy)2](mu-HAT)[Os(bpy)2]]5+ and the borderline localized-to-delocalized homo-trinuclear complex [[Ru(bpy)2]3(mu-HAT)]n+ (n = 7, 8). The near-infrared (NIR) spectrum of the +7 mixed-valence species exhibits both interconfigurational (IC) and IVCT transitions which are quantitatively similar to those in [[Ru(bpy)2](mu-HAT)[Os(bpy)2]]5+ and are indicative of the localized mixed-valence formulation [[Ru(II)(bpy)2]2[Os(III)(bpy)2](mu-HAT)]7+. The +8 state exhibits a new band attributable to an IVCT transition in the near-infrared region.  相似文献   

7.
Bergman SD  Kol M 《Inorganic chemistry》2005,44(6):1647-1654
Several chiral octahedral complexes of the general formula [Ru(bpy)2 (Lig)][PF6]2 (Lig = a ligand that can participate in pi-stacking interactions such as eilatin, isoeilatin, and tpphz) were synthesized in both the racemic and enantiomerically pure/enriched forms. Nonracemic mixtures of enantiomers of all these complexes exhibit splitting of the 1H NMR spectra (NMR nonequivalence); i.e., each spectrum contains a major and a minor set of peaks. The origin of this phenomenon is attributed to a fast equilibrium between monomers and discrete dimers held together by pi-stacking interactions, and it is observed for a wide range of pi-stacking interaction strengths. The NMR spectrum splitting exhibited by these complexes can be exploited for the evaluation of their enantiomeric excess simply from the integral ratio, without addition of chiral shift reagents.  相似文献   

8.
Spectroelectrochemical studies of the intervalence charge transfer (IVCT) characteristics of both diastereoisomeric forms of the dinuclear complex [{Ru(bpy)2}2(mu-dpi-)]n+ [bpy=2,2'-bipyridine; dpi-=4,5-di(2-pyridyl)imidazolate] showed that the degree of inter-metal electronic coupling (or valence delocalization) is dependent on stereochemical identity. Increasing the relative concentration of the strongly associating anion toluene-4-sulfonate in acetonitrile/[(n-C4H9)4N]{B(C6F5)4} solution differentially decreased the level of delocalization for the two diastereoisomers. In a comparative investigation of electrochemical and spectroelectrochemical techniques of the anion-induced electron localization in [{Ru(bpy)2}2(mu-dpo)]5+ [dpo=3,4-di(2-pyridyl)-1,2,5-oxadiazole], differences were observed between the two methods in the order and extent of effects induced by a number of inorganic anions (PF6-, BF4-, ClO4-). It was determined that the measure of coupling derived from electrochemical methods was less reliable than that obtained from spectral methods. Comparative electrochemical studies were undertaken on [{M(bpy)2}2(mu-BL)]n+ {M=Ru, Os; BL=dpo, dpi-), which revealed substantial differences in DeltaEox (the separation between the redox potentials for the MII-MII/MIII-MII and MII-MIII/MIII-MIII couples) for the two metal centers and therefore the comproportionation constant Kc, dependent on the neutral or anionic nature of the bridging ligand.  相似文献   

9.
The PF6- salt of the dinuclear [(bpy)2Ru(1)Os(bpy)2]4+ complex, where 1 is a phenylacetylene macrocycle which incorporates two 2,2'-bipyridine (bpy) chelating units in opposite sites of its shape-persistent structure, was prepared. In acetonitrile solution, the Ru- and Os-based units display their characteristic absorption spectra and electrochemical properties as in the parent homodinuclear compounds. The luminescence spectrum, however, shows that the emission band of the Ru(II) unit is almost completely quenched with concomitant sensitization of the emission of the Os(II) unit. Electronic energy transfer from the Ru(II) to the Os(II) unit takes place by two distinct processes (k(en) = 2.0x10(8) and 2.2x10(7) s(-1) at 298 K). Oxidation of the Os(II) unit of [(bpy)2Ru(1)Os(bpy)2]4+ by Ce(IV) or nitric acid leads quantitatively to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ complex which exhibits a bpy-to-Os(III) charge-transfer band at 720 nm (epsilon(max) = 250 M(-1) cm(-1)). Light excitation of the Ru(II) unit of [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ is followed by electron transfer from the Ru(II) to the Os(III) unit (k(el,f) = 1.6x10(8) and 2.7x10(7) s(-1)), resulting in the transient formation of the [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ complex. The latter species relaxes to the [(bpy)2Ru(II)(1)Os(III)(bpy)2]5+ one by back electron transfer (k(el,b) = 9.1x10(7) and 1.2x10(7) s(-1)). The biexponential decays of the [(bpy)2*Ru(II)(1)Os(II)(bpy)2]4+, [(bpy)2*Ru(II)(1)Os(III)(bpy)2]5+, and [(bpy)2Ru(III)(1)Os(II)(bpy)2]5+ species are related to the presence of two conformers, as expected because of the steric hindrance between hydrogen atoms of the pyridine and phenyl rings. Comparison of the results obtained with those previously reported for other Ru-Os polypyridine complexes shows that the macrocyclic ligand 1 is a relatively poor conducting bridge.  相似文献   

10.
In the search for light-addressable nanosized compounds we have synthesized 10 dinuclear homometallic trisbipyridyl complexes of linear structure with the general formula [M(bpy)3-BL-M(bpy)3]4+ [M = Ru(II) or Os(II); BL = polyphenylenes (2, 3, 4, or 5 units) or indenofluorene; bpy = 2,2'-bipyridine]. By using a "chemistry on the complex" approach, different sizes of rodlike systems have been obtained with a length of 19.8 and 32.5 A for the shortest and longest complex, respectively. For one of the ruthenium precursors, [Rubpy-ph2-Si(CH3)3][PF6]2, single crystals were obtained by recrystallization from methanol. Their photophysical and electrochemical properties are reported. All the compounds are luminescent both at room and low temperature with long excited-state lifetimes due to an extended delocalization. Nanosecond transient absorption showed that the lowest excited state involves the chelating unit attached to the bridging ligand. Electrochemical data indicated that the first reduction is at a slightly more positive potential than for the reference complexes [M(bpy)3]2+ (M = Ru, Os). This result confirms that the best acceptor is the bipyridine moiety connected to the conjugated spacers. The role of the tilt angle between the phenylene units, in the two series of complexes, for the ground and excited states is discussed.  相似文献   

11.
The IVCT characteristics of the mixed valence forms of the trinuclear complex [{Delta-Ru(bpy)2}2{Delta(t)-Ru(bpy)(mu-ppz)2}]n+ (n = 7, 8; t = trans), and the diastereoisomers (meso and rac) of the dinuclear complex [{Ru(bpy)2}2(mu-ppz)]5+, display a marked dependence on the nuclearity and extent of oxidation of the assemblies. The dinuclear species are classified as borderline localised-delocalised mixed valence species while the two mixed valence states of the trinuclear complex exhibit localised behaviour. One-electron oxidation of a terminal Ru centre in the trinuclear case gives rise to a broad, low intensity IVCT band for the +7 mixed valence species which is composed of two underlying Gaussian-shaped bands. The transitions are identified as adjacent and remote IVCT transitions, with the former dominating the intensity of the IVCT manifold. The +8 mixed valence species exhibits a single dominant IVCT band arising from the equivalent IVCT transitions from the central Ru(II) to peripheral Ru(III) centres.  相似文献   

12.
13.
The C(1)-symmetrical complex [Ru(bpy)(2)(ieil)][PF(6)](2) exhibits unique electrochemical and photophysical properties, and forms discrete dimers in solution and in the solid state held by weak pi-pi stacking interactions via its isoeilatin ligand, preferentially from one of its faces and in a specific orientation.  相似文献   

14.
The complex formation of the ligands 1,12-diazaperylene (dap), 1,1'-bisisoquinoline (bis), 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) with transition metal ions (M = Fe, Co, Ni, Cu, Zn, Ru, Os, Re, Pd, Pt, Ag and Cd) in the gas phase has been studied by electrospray ionization mass spectrometry. With the exception of Ru, Os, Fe, Ni and Cu, singly charged complexes [MLn](+) (n = 1,2) were observed. The complexes of dap and bis with Ru, Os, Fe and Ni ions, and the mixed ligand complexes with bpy and phen, are preferably of the doubly charged type [ML3]2+. In addition, collision-induced dissociation (CID) measurements were employed to evaluate the relative stabilities of these complexes. The CID experiments of mixed-ligand complexes which contain both dap and phen or dap and bpy exhibit preferential elimination of bpy, indicating that bpy is a weaker ligand than phen and dap.  相似文献   

15.
The rare bridging mode of 1,4-bis(2-phenolato)-1,4-diazabutadiene = glyoxalbis(2-hydroxyanil) (L(2-)) is adopted in {(mu-L(2-))[Ru11(bpy)22}2+ (1(2+)), obtained as bis-perchlorate. Four well accessible redox forms of 1(n) (n = 4+, 3+, 2+, +) have been characterised by UV-VIS-NIR spectroelectrochemistry. The (3+) and (+) intermediates have also been investigated by EPR, both showing radical-type signals close to g = 2. This observation stands in stark contrast to EPR results previously obtained for the related {(mu-L)[Ru(acac)2]2(n), n = + and -, both of which exhibit metal-centred spin. In combination with the UV-VIS-NIR spectra these results suggest the preferential involvement of the multistep ligand redox system L(n-) in the electron transfer processes. The relative stabilisation of Ru11 by pi-accepting bpy is made responsible for the oxidation of the ligand L(2-) instead of the metal.  相似文献   

16.
The synthesis and electronic properties of dinuclear ([(bipy)2Ru(I)M(terpy)][PF6]4(bipy = 2,2'-bipyridine, terpy = 2,2':6',2'-terpyridine; M = Ru, Os)) and trinuclear ([[(bipy)2Ru(I)]2M][PF6]6 M = Ru, Os, Fe, Co) complexes bridged by 4'-(2,2'-bipyridin-4-yl)-2,2':6',2'-terpyridine (I) have been investigated and are compared with those of mononuclear model complexes. The electrochemical analysis using cyclic voltammetry and differential pulse voltammetry reveals that there are no interactions in the ground state between adjacent metal centres. However, there is strong electronic communication between the 2,2'-bipyridine and 2,2':6',2'-terpyridine components of the bridging ligand. This conclusion is supported by a step-by-step reduction of the dinuclear and trinuclear complexes and the assignment of each electrochemical process to localised ligand sites within the didentate and terdentate domains. The investigation of the electronic absorption and emission spectra reveals an energy transfer in the excited state from the terminating bipy-bound metal centres to the central terpy-bound metal centre. This indicates that the bridge is able to facilitate energy transfer in the excited state between the metal centres despite the lack of interactions in the ground state.  相似文献   

17.
Four complexes of the ligand 1,12-diazaperylene (DAP) have been prepared, [Ru(bpy)n(DAP)(3-n)]2+ where n = 0-2 and [Ru(DAP)3]2+. The [Ru(DAP)3]2+ complex was characterized by X-ray analysis and was found to exhibit the expected propeller-like structure with significant intermolecular pi-stacking interactions. The three Ru(II) complexes showed self-consistent optoelectronic properties with similar ligand-centered pi-pi* absorptions in the range of 333-468 nm and MLCT bands associated with the DAP which increased in intensity and decreased in energy as the number of DAP ligands varied from 1 to 3. Hypochromicity and viscosity changes were observed that were consistent with DAP intercalation into DNA, and binding constants were measured in the range of 1.4-1.6 x 10(6) M(-1) for the mixed ligand complexes. Furthermore, the complex [Ru(bpy)2(DAP)]2+ was found to photocleave plasmid DNA upon irradiation with visible light.  相似文献   

18.
The mixed-valence systems meso- and rac-[{M(bpy)2}2(mu-BL)]5+ {M = Ru, Os; BL = a series of polypyridyl bridging ligands such as 2,3-bis(2-pyridyl)benzoquinoxaline (dpb)} are characterized by multiple intervalence charge transfer (IVCT) and interconfigurational (IC) bands in the mid-infrared and near-infrared (NIR) regions. Differences in the relative energies of the IC transitions for the fully oxidized (+6) states of the osmium systems demonstrate that stereochemical effects lead to fundamental changes in the energy levels of the metal-based dpi orbitals, which are split by spin-orbit coupling and ligand-field asymmetry. An increase in the separation between the IC bands as BL is varied reflects the increase in the degree of electronic coupling through the series of ruthenium and osmium complexes. The increase in the IVCT bandwidths for the former is therefore attributed to the increase in the separation of the three underlying components of the bands. Stark effect measurements reveal small dipole moment changes accompanying IVCT excitation in support of the localized-to-delocalized or delocalized classification for the dinuclear ruthenium and osmium systems.  相似文献   

19.
单核、对称双核钌配合物在铂电极上的电化学行为   总被引:3,自引:0,他引:3  
李红  蒋雄  巢晖  叶保辉  计亮年 《化学学报》2000,58(7):825-830
利用循环伏安、循环交流伏安和微分电容测定等电化学方法研究了由2,2'-联吡啶(bpy)和桥联配体1,4-二(2-咪唑并[4,5-f][1,10]邻菲咯啉)苯(DIPB)配位而成的单核钌配合物[Rul:Ru(bpy)~2(DIPB)(ClO~4)~2]和对称双核钌配合物[Ru2:(bpy)~2Ru(DIPB)Ru(bpy)~2(ClO~4)~4]在铂电极上的电化学行为。研究结果表明,在0.1mol/L高氯酸四丁基铵(TBAP)的乙腈溶液中,这两种配合物的中心钌离子在铂电极上均呈现一对氧化还原峰,而配体2,2'-联吡啶则呈现两对氧化还原峰。单核Ru1和双核Ru2所对应的各组氧化还原峰分别符合可逆的单电子和二电子传递反应过程的特征,所对应的条件电位(FormalPotential)Ru2较ru1有轻微正移。Ru1和Ru2所对应的配位阳孩子的扩散系数分别为9.93×10^-^6cm^2/s和3.50×10^-^6cm^2/s。在循环交流法和微分电容法确定的时间量程内,两中心钌离子在桥联配体间的电子传递过程较它与电极间的慢。  相似文献   

20.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号