首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We have used photoionization efficiency spectroscopy to determine ionization potentials (IP) of the niobium-carbide clusters, Nb3C(n) (n = 1-4) and Nb4C(n) (n = 1-6). The Nb3C2 and Nb4C4 clusters exhibit the lowest IPs for the two series, respectively. For clusters containing up to four carbon atoms, excellent agreement is found with relative IPs calculated using density functional theory. The lowest energy isomers are mostly consistent with the development of a 2 x 2 x 2 face-centered cubic structure of Nb4C4. However, for Nb3C4 a low-lying isomer containing a molecular C2 unit is assigned to the experimental IP rather than the depleted 2 x 2 x 2 nanocrystal isomer. For Nb4C5 and Nb4C6, interpretation is less straightforward, but results indicate isomers containing molecular C2 units are the lowest in energy, suggesting that carbon-carbon bonding is preferred when the number of carbon atoms exceeds the number of metal atoms. A double IP onset is observed for Nb4C3, which is attributed to ionization from the both the lowest energy singlet state and a meta-stable triplet state. This work further supports the notion that IPs can be used as a reliable validation for the geometries of metal-carbide clusters calculated by theory.  相似文献   

2.
We have investigated the structure and electronic properties of cesium clusters following all electron ab initio theoretical methods based on configuration interaction, second-order Moller-Plesset (MP2) perturbation theory, and density-functional theory. Becke's three-parameter nonlocal hybrid exchange-correlation functional (B3LYP) is found to perform best on the present systems with a split valence 3-21G basis function. We have calculated the optimized geometries of neutral and singly charged cesium clusters having up to ten atoms, their binding energy per atom, ionization potentials (IPs), and adiabatic electron affinity (EA). Geometry optimizations for all the clusters are carried out without imposing any symmetry restriction. The neutral clusters having up to six atoms prefer planar structure and three-dimensional structure is preferred only when the number of atoms in a cluster is more than six. There is a good agreement between the present theoretical and reported experimental IP values for the neutral clusters with cluster size n相似文献   

3.
Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.  相似文献   

4.
Ionization potentials (IPs) of [(CH(3))(2)NH](m)(NH(3))(n)-H hypervalent radical clusters produced by an ArF excimer laser photolysis of dimethylamine (DMA)-ammonia mixed clusters are determined by the photoionization threshold measurements. The IPs of the DMA(1)(NH(3))(n)-H hypervalent radicals decrease rapidly with the number of ammonia up to n=4, and then its decrease rate becomes much slower for n ≥ 5. This trend is very similar to that found for NH(4)(NH(3))(n) clusters. The calculated results on the stable structures and IP as well as the observed IP for DMA(1)(NH(3))(n)-H indicate that the hydrogen atom-localized site is the NH(3) moiety for n=1, while the doubly coordinated DMA-H is favorable for n=2-4, and then 4-fold-coordinated NH(4) is again more stable for n ≥ 5. These changes are consistent with the results on the femtosecond pump-probe experiments of DMA(n)-H clusters. Switching of the hydrogen atom-localized site is ascribed to the instability of DMA-H against a hydrogen-atom dissociation.  相似文献   

5.
Ethanol clusters are generated in a continuous He seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method clusters of the type Na(C(2)H(5)OH)(n) are formed and characterized by determining size selectively their ionization potentials (IPs) for n = 2-40 in photoionization experiments. A continuous decrease to 3.1 eV is found from n = 2 to 6 and a constant value of 3.07 ± 0.06 eV for n = 10-40. This IP evolution is similar to the sodium-water and the sodium-methanol system. Quantum chemical calculations (B3LYP and MP2) of the IPs indicate adiabatic contributions to the photoionization process for the cluster sizes n = 4 and 5, which is similar to the sodium-methanol case. The results of the extrapolated IPs and the vertical binding energies (VEBs) of cluster anions are compared with the recently reported VEBs of solvated electrons in liquid water, methanol, and ethanol solutions in the range of 3.1-3.4 eV. The new results imply that the extrapolated VBEs of solvated electrons in anionic clusters match the VBE in liquid water, while they are about 0.5 eV too low for methanol. The influence of the presence of counterions on these findings is discussed.  相似文献   

6.
Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.  相似文献   

7.
Small carbon clusters (Cn, n = 2-15) are produced in a molecular beam by pulsed laser vaporization and studied with vacuum ultraviolet (VUV) photoionization mass spectrometry. The required VUV radiation in the 8-12 eV range is provided by the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory. Mass spectra at various ionization energies reveal the qualitative relative abundances of the neutral carbon clusters produced. By far the most abundant species is C3. Using the tunability of the ALS, ionization threshold spectra are recorded for the clusters up to 15 atoms in size. The ionization thresholds are compared to those measured previously with charge-transfer bracketing methods. To interpret the ionization thresholds for different cluster sizes, new ab initio calculations are carried out on the clusters for n = 4-10. Geometric structures are optimized at the CCSD(T) level with cc-pVTZ (or cc-pVDZ) basis sets, and focal point extrapolations are applied to both neutral and cation species to determine adiabatic and vertical ionization potentials. The comparison of computed and measured ionization potentials makes it possible to investigate the isomeric structures of the neutral clusters produced in this experiment. The measurements are inconclusive for the n = 4-6 species because of unquenched excited electronic states. However, the data provide evidence for the prominence of linear structures for the n = 7, 9, 11, 13 species and the presence of cyclic C10.  相似文献   

8.
Sodium doped silicon clusters (SinNam, 3n11, 1m4) were produced by two independent laser vaporization methods and their ionization potentials were measured by scanning the wavelength of the UV dye laser. The IPs of most SinNam clusters decrease monotonously with the number of Na atoms, but IPs of Si7Nam and Si10Nam clusters show an apparent even-odd alternation; odd numbers of Na atoms efficiently decrease the IP but even numbers of Na atoms never significantly decrease the IPs. In addition, the reactivity of SinNam clusters for NO molecules was investigated with a fast flow reactor, and an anti-correlation between IP and the reactivity was clearly observed; clusters having high IP show low reactivity andvice versa.  相似文献   

9.
We present accurate ionization potentials (IPs) for small lithium clusters and hydrogenated lithium clusters (n=1-4), computed using coupled-cluster singles and doubles theory augmented with a perturbative correction for connected triple excitations [CCSD(T)] with the correlation-consistent weighted core-valence quadruple-zeta basis set (cc-pwCVQZ). In some cases the full CCSDT method has been used. Comparison of computed binding energies with experiment for the pure cationic lithium clusters reveals excellent agreement, demonstrating that previous discrepancies between computed and experimentally derived atomization energies for the corresponding neutral clusters are due to the use of an inaccurate experimental IP for Li(4). The experimental IP for Li(4) falls 0.43 eV below our theoretical adiabatic value of 4.74 eV, which should be a lower bound to the measured IP. Our recommended zero-point corrected adiabatic IPs for Li, Li(2), Li(3), Li(4), LiH, Li(2)H, Li(3)H, and Li(4)H are 5.39, 5.14, 4.11, 4.74, 7.69, 3.98, 4.69, and 4.05 eV, respectively. Zero-point vibrationally corrected CCSD(T) atomization energies per atom for Li(2) (+), Li(3) (+), Li(4) (+), LiH(+), Li(2)H(+), Li(3)H(+), and Li(4)H(+) are 0.64, 0.96, 0.90, 0.056, 1.62, 1.40, and 1.40 eV, respectively.  相似文献   

10.
In a continuous neat supersonic expansion ammonia clusters are generated and doped with sodium atoms in a pickup cell. Thus clusters of the form Na(NH(3))(n) are produced that are photoionized by a tunable dye laser system. The ions are mass analyzed in a reflectron time-of-flight mass spectrometer, and the wavelength dependent ion signals serve for the determination of the ionization potentials (IP) of the different clusters in the size range 10< or =n< or =1500. Aside from a plateau for 10< or =n< or =17 and smaller steps at n=24, 35, and 59 on the average a continuous decrease of the IP with cluster size is observed. The IPs in this size range are linear with (n+1)(-13) and extrapolate to IP(n=infinity)=1.66+/-0.01 eV. The slope is consistent with a dielectric continuum model of the solvated electron and the dielectric constant of the solid. The extrapolated IPs are compared with results obtained for negative ammonia cluster ions and metallic solutions in liquid ammonia. Differences are explained by the presence of counterions and their various distances from the solvated electron.  相似文献   

11.
在密度泛函理论B3LYP水平上, 对InnNa和InnNa+(n=2-8)团簇进行了结构优化和振动频率计算. 计算结果表明, InnNa(n=2、3、4、6)最稳定结构中的对称性分别为C2v、C3v、C4v和C2v, 而InnNa(n=5、7、8)的最稳定结构的对称性为C1点群. 从InnNa(n=4-8)的最稳定结构可以看出, Na原子均位于四个In原子形成的四边形面上. 对于InnNa+(n=2-8), 除了In2Na+、In4Na+和In7Na+, 其它结构都与其中性结构相似. 进一步计算InnNa(n=2-8)团簇的平均结合能、能量的二阶差分以及绝热电离能表明, InnNa(n=2-8)团簇能量的二阶差分呈现奇偶交替特征, In4Na和In6Na较其它团簇更为稳定, 而且理论计算得到的绝热电离能和实验结果吻合得很好.  相似文献   

12.
The physisorption of deuterium molecules on small nickel clusters having chemisorbed deuterium atoms is identified. The principal evidence for physisorption is the appearance at reaction temperatures below 200 K of product species having more deuterium bound to them than the chemisorption maximum, and a lowering of cluster ionization potentials (IPs) for these species. It is argued that the IP lowering is a consequence of molecular physisorption, and that identification of the number of physisorption sites on cluster surfaces can be used to infer structural information.  相似文献   

13.
Using a self-consistent implementation of the Perdew-Zunger self-interaction corrected (PZ-SIC) density-functional theory, we have calculated ionization potentials (IP) and electron affinities (EA) of first- and second-row atoms and a set of small molecules. Several exchange-correlation functionals were tested. IPs and EAs were obtained by two methods: as the difference in self-consistent field (SCF) energies of neutrals and ions (deltaSCF) and as negatives of highest-occupied orbital energies. We found that, except for local spin-density approximation, PZ-SIC worsens DeltaSCF IPs and EAs. On the other hand, PZ-SIC brings orbital eigenvalues into much better agreement with electron removal energies. The Perdew-Zunger SIC seems to over-correct many-electron systems; for molecules it performs worse than for atoms. We also discuss several common approximations to PZ-SIC such as spherical averaging of orbital densities in atoms.  相似文献   

14.
We have calculated the structural and energetic properties of neutral and ionic (singly charged anionic and cationic) semiconductor binary silicon-germanium clusters Si(m)Ge(n) for s = m + n ≤ 12 using the density functional theory (DFT-B3LYP) and coupled cluster [CCSD(T)] methods with Pople's 6-311++G(3df, 3pd) basis set. Neutral and anionic clusters share similar ground state structures for s = 3-7, independent of the stoichiometry and atom locations, but start to deviate at s = 8. The relative energetic stability of the calculated ground state structures among possible isomers has been analyzed through a bond strength propensity model where the pair interactions of Si-Si, Si-Ge, and Ge-Ge are competing. Electron affinities, ionization potentials, energy gaps between the highest and lowest occupied molecular orbitals (HOMO-LUMO gaps), and cluster mixing energies were calculated and analyzed. Overall, for a fixed s, the vertical ionization potential increases as the number of silicon atoms m increases, while the vertical electron affinity shows a dip at m = 2. As s increases, the ionization potentials increase from s = 2 to s = 3 and then decrease slowly to s = 8. The mixing energies for neutral and ionic clusters are all negative, indicating that the binary clusters are more stable than pure elemental clusters. Except for s = 4 and 8, cationic clusters are more stable than anionic ones and, thus, are more likely to be observed in experiments.  相似文献   

15.
With the help of various theoretical methods, ionization potentials (IPs) have been computed for a panel of small molecules containing atoms of group 14, 15, or 16 and representing different singly, doubly, or triply bonded systems with or without an interacting heteroatom lone pair. Comparison of experimental IP values to theoretical results indicates that (i) the standard outer valence green function (OVGF), density functional theory (DFT), and DeltaSCF methods lead to rather accurate values, (ii) the CASPT2 method systematically underestimates IPs, (iii) the method of deducing IPs from a shift of some standard DFT eigenvalue spectrum is a straightforward approach leading to rather accurate IPs, (iv) the eigenvalue spectrum obtained with the so-called statistical average of different orbital model potential (SAOP) exchange-correlation model potential is an efficient approach leading directly to quite accurate IPs, and (v) a good prediction of the IP spectrum can be obtained from the shifted excitation spectra of the system calculated by the time-dependent DFT (TD-DFT) method. It is also shown that the TD-DFT calculations of the ionized species bring a significant improvement over the calculations of the neutral molecules, indicating that a great part of the electronic relaxation is already taken into account (in a similar way for all ionizations). Finally, in the case of TD-DFT calculations of neutral molecules, the statistical average of different orbital model potential (SAOP) functional does not lead to significantly better results than the B3LYP functional.  相似文献   

16.
Density functional theory calculations were performed to explore the influence of halogenation on the reorganization energies (λ), adiabatic ionization potentials (IPs), adiabatic electron affinities (EAs), and air stabilities of a series of pentacene (PENT) and tetraceno[2,3-b]thiophene (TbTH) derivatives. According to calculated IP and EA values, all well-known PENT and TbTH derivatives in this paper are air-stable p-channel but not air-stable n-channel organic field-effect transistors (OFETs) due to insufficient EAs, consistent with experimental observations. The calculated results show that attaching two or more halogen atoms onto air-unstable 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene (TIPS-N4PENT) is sufficient for promoting ambipolar air-stable properties. The electronic coupling and band structure calculations indicate that halogenated TIPS-N4PENT derivatives have potential applications in high-performance ambipolar air-stable OFETs. They also provide rational guidelines for the design of ambipolar air-stable organic semiconductors (OSCs).  相似文献   

17.
Neutral Mg(m)C(n)H(x) and Be(m)C(n)H(x) clusters are investigated both experimentally and theoretically for the first time. Single photon ionization at 193 nm is used to detect neutral cluster distributions through time of flight mass spectrometry. Mg(m)C(n)H(x) and Be(m)C(n)H(x) clusters are generated through laser ablation of Mg or Be foil into CH(4)/He expansion gas. A number of members of each cluster series are identified through isotopic substitution experiments employing (13)CH(4) and CD(4) instead of CH(4) in the expansion gas. An oscillation of the vertical ionization energies (VIEs) of Mg(m)C(n)H(x) clusters is observed in the experiments. The VIEs of Mg(m)C(n)H(x) clusters are observed to vary as a function of the number of H atoms in the clusters. Density functional theory (DFT) and ab initio (MP2) calculations are carried out to explore the structures and ionization energies of Mg(m)C(n)H(x) clusters. Many Be(m)C(n)H(x) clusters are also generated and detected in the experiments. The structures and VIEs of Be(m)C(n)H(x) clusters are also studied by theoretical calculations. Calculational results provide a good and consistent explanation for the experimental observations, and are in general agreement with them for both series of clusters.  相似文献   

18.
The ionization potentials of AlnCom clusters (n>m) have been bracketed using laser photoionization mass spectrometry. We find the electronic shell structure manifested in the ionization potentials of Aln for n≥7 is observed also for AlnCo and AlnCo2, and is consistent with cobalt contributing one electron to the conduction band of the cluster. However, with increasing number of cobalt atoms, this simple picture breaks down; all vestiges of aluminum cluster electronic shell structure are absent for m≥4.  相似文献   

19.
Possible structures of the carbon-nitrogen clusters of the form C(m)N(n) (m = 1-4, n = 1-4, m + n = 2-5) were predicted for the neutral, anion, and cation species in the singlet, doublet, and triplet states, whenever appropriate. The calculations were performed at the G3, MP2(fc)/6-311+G*, and B3LYP/6-311+G* levels of theory. Several molecular properties related to the experimental data--such as the electronic energy, equilibrium geometry, binding energy, HOMO-LUMO gap (HLG), and spin contamination --were calculated. In addition the vertical electron attachment, the adiabatic electron affinity, and vertical ionization energy, of the neutral clusters were calculated. Most of the predicted lowest energy structures were linear, whereas bent structures became more stable with the increase of the cluster size and increase of the number of the N atoms. In most of the predicted lowest energy structures, the N atom prefers the terminal position with acetylenic bond. The calculated BE of the predicted clusters increases with the increase of the cluster size for the neutral and cation clusters but decreases with the increase of the cluster size for the anion clusters. The predicted clusters are characterized by high HLG of about 11 eV on the average, with that of the anion clusters is smaller than that for the neutral and cation clusters. It is concluded then that the anion clusters are less stable than the corresponding neutral and cation clusters. Finally, the N(2) loss reaction is treated.  相似文献   

20.
金钯二元小团簇的几何结构与电子性质   总被引:1,自引:0,他引:1  
在UBP86/LANL2DZ和UB3LYP/def2-TZVP水平下详细研究了AumPdn(m+n≤6)团簇的几何结构和电子性质.阐明了团簇的结构特征、平均结合能、垂直电离势、垂直电子亲和能、电荷转移以及成键特征.除单取代混合团簇(AunPd和AuPdn,n=5或6)外,五和六原子混合团簇中钯原子趋于聚集到一起形成Pdcore,金原子分布在Pdcore周围形成PdcoreAushell结构.含一个和两个钯原子团簇的电子性质与纯金团簇类似,呈现一定奇偶振荡.混合团簇的电子性质,如最高占据分子轨道(HOMO),最低未占据分子轨道(LUMO),垂直电离势,垂直电子亲和能,Fermi能级和化学硬度等均与团簇空间结构和金、钯原子数之比直接相关.混合团簇中存在钯原子到金原子间的电荷转移,表明团簇中存在明显金钯间成键作用.分析团簇的电荷分布、前线轨道和化学硬度表明,金钯混合团簇对小分子如O2、H2和CO等的反应活性要强于纯金团簇.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号