首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A novel and facile method for effective immobilization of Ru(bpy)32+ within titanate nanotubes (TiNTs) and its application as a sensitive solid-state electrochemiluminescence (ECL) sensor material was studied. The process involved the formation of Ru(bpy)32+-titanate nanotube nanocomposite (Ru-TiNTs) via electrostatic interactions by mixing TiNTs and Ru(bpy)3(ClO4)2 in aqueous medium. Then Ru-TiNTs were attached to the surface of a Pt electrode to form an ECL sensor. Characterization of Ru(bpy)32+-titanate nanotube nanocomposite was accomplished by transmission electron microscopy, X-ray photoelectron spectrum, and field emission scanning electron microscope. The electrochemistry and ECL behavior of Ru(bpy)32+ immobilized on TiNTs were studied with tripropylamine as a coreactant. As-prepared Ru-TiNTs exhibited very good stability and Ru(bpy)32+ species contained showed excellent ECL behavior. Therefore, the as-prepared Ru(bpy)32+-titanate nanotube nanocomposite exhibited great promise as new luminescent materials for solid-state ECL detection.  相似文献   

2.
The transient luminescence of three kinds of ruthenium complexes [Ru(bpy)2(7-CH3-dppz)]2+, [Ru(bpy)2(7-F-dppz)]2+ and [Ru(phen)2(7-F-dppz)]2+ bound to calf thymus DNA (ctDNA) has been studied by using the time-resolved spectroscopy. The results show that the luminescence is due to the radiative decay from the charge-transfer states to the ground state. By the interaction with DNA, the radiativeless rate of the photoexcited Ru complex molecules decreases, which results in the increase of luminescence lifetime and efficiency. The structure of the Ru complex has an important impact on the interaction with DNA. The [Ru(bpy)2(7-CH3-dppz)]2+ shows the longest luminescence lifetime (about 382 ns), while the [Ru(bpy)2(7-F-dppz)]2+ shows the shortest lifetime (about 65 ns). The possible origin of the luminescence dynamics is discussed. Supported by the National Natural Science Foundation of China (Grant Nos. 60478013 and 20571089), the Key Program of Natural Science Foundation of Guangdong Province of China (Grant No. 05101819), the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20040558031) and the Scientific Research Foundation of Maoming College (Grant No. 203346)  相似文献   

3.
The novel ligand (dmbip) 2-(4-N, N-dimethylbenzenamine)1H-imidazo[4, 5-f][1, 10]phenanthroline and its complexes [Ru(phen)2dmbip]2+ (1), [Ru(bpy)2dmbip]2+ (2), [Co(phen)2dmbip]3+ (3) and [Co(bpy)2dmbip]3+ (4) [where phen?=?1, 10-phenanthroline, bpy?=?2, 2-bipyridine], have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, 13C NMR and Mass spectra. The DNA binding properties of the complexes were investigated by absorption, emission, quenching studies, light switch “on and off”, salt dependent, sensor (cation and anion) studies, viscosity measurements, cyclic voltammetry, molecular modeling and docking studies. The four complexes were screened for Photo cleavage of pBR322 DNA, antimicrobial activity and cytotoxicity. The experimental results indicate that the four complexes can intercalate into DNA base pairs. The DNA-binding affinities of these complexes follow the order [Ru(phen)2dmbip]2+ > [Co(phen)2dmbip]3+ > [Ru(bpy)2dmbip]2+ > [Co(bpy)2dmbip]3+.  相似文献   

4.
Guiyun Xu  Lin Tang  Hongtian Liu 《Ionics》2013,19(2):309-314
The electrochemical property of dinuclear copper(II) complex containing mixed ligands of N-hydroxyethylaminoethyl oxamido and 2,2′-bipyridine [Cu2(bpy)2(HAO) 2 2+ ] was studied with cyclic voltammetry. Cu2(bpy)2(HAO) 2 2+ had irreversible oxidation peaks in 0.1 mol/L NaCl solution at the stearic acid-modified carbon paste electrode. Cyclic voltammetry and absorption spectra measurements were used to study the interaction between Cu2(bpy)2(HAO) 2 2+ and herring fish sperm DNA. All the experimental results showed that Cu2(bpy)2(HAO) 2 2+ interacted with DNA mainly through electrostatic affinity to make tiny difference between Cu2(bpy)2(HAO) 2 2+ –ssDNA and Cu2(bpy)2(HAO) 2 2+ –dsDNA. The binding ratio and the binding constant of DNA–Cu2(bpy)2(HAO) 2 2+ were calculated as 1:1 and 6.41?×?104, respectively. The redox peak current of Cu2(bpy)2(HAO) 2 2+ decreased markedly after its interaction with DNA. This was used to detect the concentration of DNA quantitatively.  相似文献   

5.
The excited state of Ru(II)[bpy]3 2+ dissolved in hydroxylic solvents is subject to specific solvent effects, which were hitherto not understood on a quantitative basis. We determined the solvent effects of linear monovalent alcohols on the energy gap law of internal conversion with the help of lifetime and intensity measurements. An on-line method for measurement of the temperature dependence of quantum efficiencies was introduced. A modified Franck-Condon analysis of emission spectra by taking into account the shape of a Morse potential of the involved states was applied to compute excited-state energies.Abbreviations used Ru(II)[bpy]3 2+ ruthenium(II)tris(2,2-bipyridyl) chloride - MLCT metal-to-ligand charge transfer - PMT photomultiplier tube  相似文献   

6.
Quenching of Ru(bpy) 32+ (bpy=2,2′-bipyridine) coreactant electrogenerated chemiluminescence (ECL) has been observed in the presence of acetaminophen, salicylic acid and related complexes. However, no quenching is observed with the acetylsalicylic acid. In most instances, quenching is observed with 100-fold excess of quencher (compared to ECL luminophore) with complete quenching observed between 10,000 and 100,000 fold excess. Fluorescence and UV–vis experiments coupled with bulk electrolysis support the formation of benzoquinone products upon electrochemical oxidation. The mechanism of quenching may involve the interaction of the electrochemically generated benzoquinone species with (i) the ?Ru(bpy)32+ excited state or (ii) highly energetic coreactant radicals.  相似文献   

7.
Density functional theory (DFT)-based relativistic calculations were performed to model the Ru L-edge X-ray absorption near edge structure (XANES) spectra of the hexaammineruthenium complex [Ru(NH3)6]3+ and “blue dimer” water oxidation catalyst, cis,cis- [(bpy)2(H2O)RuIIIORuIII(OH2)(bpy)2]4+ (bpy is 2,2-bipyridine). Two computational approaches were compared: simulations without the core-hole and by modeling of the core-hole within the Z+1 approximation. Good agreement between calculated and experimental XANES spectra is achieved without including the core-hole. Simulations with algorithms beyond the Z+1 approximation were only possible in a framework of the scalar relativistic treatment. Time-dependent DFT (TD-DFT) was used to compute the Ru L-edge spectrum for [Ru(NH3)6]3+ model compound. Three different core-hole treatments were compared in a real-space full multiple scattering XANES modeling within the Green function formalism (implemented in the FEFF9.5 package) for the [Ru(Mebimpy)(bpm)(H2O)]2+ complex. The latter approaches worked well in cases where spin–orbit treatment of relativistic effects is not required.  相似文献   

8.
The new ligand 4-(isopropylbenzaldehyde)imidazo[4,5-f ][1,10]phenanthroline (ippip) and its complexes [Ru(phen)2(ippip)]2+(1),[Co(phen)2(ippip)]3+(2),[Ru(bpy)2(ippip)]2+(3),[Co(bpy)2(ippip)]3+(4)(bpy=2,2-bipyridine) and (phen=1,10-phenanthroline) were synthesized and characterized by ES+-MS, 1H and 13C NMR. The DNA binding properties of the four complexes were investigated by different spectrophotometric methods and viscosity measurements. The results suggest that complexes bind to calf thymus DNA (CT-DNA) through intercalation. When irradiated at 365 nm, the complexes promote the photocleavage of pBR322 DNA, and complex 1 cleaves DNA more effectively than 2, 3, 4 complexes under comparable experimental conditions. Furthermore, photocleavage studies reveal that singlet oxygen (1O2) plays a significant role in the photocleavage.  相似文献   

9.
The three Ru(II) complexes of [Ru(phen)2dppca]2+ (1) [Ru(bpy)2dppca]2+ (2) and [Ru(dmb)2dppca]2+ (3) (where phen = 1,10 phenanthroline, bpy = 2,2-bipyridine, dmb = 2 ,2-dimethyl 2′,2′-bipyridine and polypyridyl ligand containing a single carboxylate functionality dppca ligand (dipyridophenazine-11-carboxylic acid) have been synthesized and characterized. These complexes have been shown to act as promising calf thymus DNA intercalators and a new class of DNA light switches, as evidenced by UV-visible and luminescence titrations with Co2+ and EDTA, steady-state emission quenching by [Fe(CN)6]4− and KI, DNA competitive binding with ethidium bromide, viscosity measurements, and DNA melting experiments. The results suggest that 1, 2, and 3 complexes bind to CT-DNA through intercalation and follows the order 1 > 2 > 3. Under irradiation at 365 nm, the three complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

10.
The sonochemiluminescence spectra of electron-excited ions *[Ru(bpy)3]2+ was registered for the first time during sonolysis of argon saturated aqueous solutions of Ru(bpy)3Cl2 with low concentration. At single-bubble sonolysis, the luminescence band of ruthenium is recorded at a concentration of Ru(bpy)3Cl2 from 10−6 M, and at multibubble from 10−5 M. Possible mechanisms for the appearance of the band of a tris-bipyridyl ruthenium(II) complex on the background of an structureless continuum of water in the spectra of sonoluminescence are analyzed. Based on the results of the comparison of the sonoluminescence spectra of Ru(bpy)3Cl2 aqueous solutions with the sonoluminescence spectra of aqueous solutions of rhodamine B (which has a high quantum yield of photoluminescence) it was established that a possible mechanism of sonophotoluminescence does not play a decisive role in ruthenium sonoluminescence. The effect of radical acceptors (O2, C2H5OH, Cd2+, I) on ruthenium sonoluminescence is analyzed. The most significant mechanism for the formation of electron-excited ions *[Ru(bpy)3]2+ during sonolysis is the sonochemiluminescence in oxidation-reduction reactions involving [Ru(bpy)3]2+ ions and radical products of sonolysis of water (OH, H, eaq) in the solution volume.  相似文献   

11.
The electrochemiluminescence (ECL) of tris(2,2′-bipyridine)ruthenium(II) (Ru(bpy)32+) in the presence of lidocaine was investigated under ultrasound (US) irradiation. The sonoelectrochemical experiments are conducted by indirect irradiation of ultrasound with a piezoelectric transducer operating at 430 kHz. In a supporting electrolyte at pH 11, the Ru(bpy)32+/lidocaine system gave weak ECL peaks around +1.2 V and +1.45 V, respectively. The ECL signal at +1.2 V was attributed to redox reactions of the oxidative intermediates of Ru(bpy)32+ and lidocaine, while the signal at +1.45 V was assumed to be caused by an advanced oxidation process due to the generation of hydroxyl radicals (OH) at the electrode surface. In this study, the potential modulation approach is employed in the study of ECL process upon US irradiations because it can suppress the noise components from sonoluminescence effectly and improve the resolution of ECL-potential profiles. It is found ECL signals were greatly enhanced upon US irradiation at the output power of 30 W, however, the relative intensity of ECL signal at +1.2 V was larger than that obtained with a rotating disk electrode even though the mass transport effect is equilvalent. The experiment results suggest that the chemical effect (i.e., generation of OH) by 430 kHz US becomes remarkable in the electrochemical process. Detailed ECL reaction routes under US are proposed in this study.  相似文献   

12.
To study the fate of a molecular di‐μ‐oxo‐bridged trinuclear ruthenium complex, [(NH3)5Ru–O–Ru(NH3)4–O–Ru(NH3)5]6+, also known as Ru‐red, during the electro‐driven water oxidation reaction, electrochemical in situ surface enhanced Raman spectroscopy (SERS) investigations have been conducted on an electrochemically roughened gold surface in acidic condition. It was previously described that on a basal plane pyrolitic graphite electrode in 0.1 M H2SO4 aqueous solution, Ru‐red undergoes one electron oxidative conversion into a stable higher oxidation state ruthenium complex, Ru‐brown, at <1.0 V (vs normal hydrogen electrode (NHE)), and this leads to water oxidation and dioxygen release, but the fate of Ru‐red during electrochemistry was not studied in much detail. In this investigation, Ru‐red dispersed in acid electrolyte and immobilized on a roughened gold electrode without Ru‐red in solution has been subjected to anodic controlled potential experiments, and in situ SERS was carried out at various potentials in succession. The electrochemical SERS data obtained for Ru‐red are also compared with in situ SERS results of an electrodeposited ruthenium oxide thin film on the Au disk. Our study suggests that on a gold electrode in sulfuric acid solution containing Ru‐red, one electron oxidative conversion of Ru‐red to a higher oxidation state ruthenium compound, Ru‐brown, occurs at ca. 0.74 V (vs NHE), as supported by the electrochemical in situ SERS experiments. Moreover, at higher potentials and on Au disk, the Ru‐red / Ru‐brown are not stable and slowly decompose or electro‐oxidize leading to deactivation of the tri‐ruthenium catalytic system in acidic medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
It was studied that the nanostructure formed on a gold surface via a simple oxidation-reduction cycles (ORC) in 0.1 M KCl containing Ru(bpy)32+ with different concentrations. Atomic force microscopy (AFM) and energy-dispersed spectroscopy (EDS) were used to characterize the nanostructure formed on the gold surface. Sweep-step voltammetry and corresponding electroluminescence (ECL) response, in situ electrochemical quartz crystal microbalance (EQCM) measurement were used to monitor the ORC procedure. It was found that the surface structure became more uniform in the presence of Ru(bpy)32+, and the surface roughness was decreasing with the increasing of Ru(bpy)32+ concentration, suggesting a simple and effective method to control the formation of nanostructure on the gold surface.  相似文献   

14.
The electrochemical properties of carbon films, of thickness between 200 and 500 nm, sputter-coated on gold- and platinum-coated 6 MHz piezoelectric quartz crystal oscillators, as new electrode materials have been investigated. Comparative studies under the same experimental conditions were performed on bulk electrodes. Cyclic voltammetry was carried out in 0.1 M KCl electrolyte solution, and kinetic parameters of the model redox systems Fe(CN)63−/4− and [Ru(NH3)6]3+/2+ as well as the electroactive area of the electrodes were obtained. Atomic force microscopy was used in order to examine the surface morphology of the films, and the properties of the carbon films and the electrode-solution interface were studied by electrochemical impedance spectroscopy. The results obtained demonstrate the feasibility of the preparation and development of nanometer thick carbon film modified quartz crystals. Such modified crystals should open up new opportunities for the investigation of electrode processes at carbon electrodes and for the application of electrochemical sensing associated with the EQCM.  相似文献   

15.
Both surface enhanced Raman scattering (SERS) and surface enhanced resonant Raman scattering (SERRS) have been observed from Ru(bpy)32+ adsorbed on p-GaAs (1 0 0) after the electrodeposition of Ag particles onto the semiconductor surface. For the enhancement factor for SERS a lower limit of 104 has been determined.  相似文献   

16.
Three Ruthenium(II) polypyridine complexes, [Ru(phen)2(mipc)]2+(1), [Ru(bpy)2(mipc)]2+ (2) and [Ru(dmb)2(mipc)]2+(3) [mipc?=?2-(6-methyl-3-(1H-imidazo[4, 5-f][1,10]-phenanthroline-2-yl)-4H-chromene-4-one, phen?=?1,10-phenanthroline,bpy?=?2, 2′bipyridine,dmb?=?4, 4′-dimethyl-2, 2′-bipyridine] have been synthesized and characterized by elemental analysis, IR, UV–Vis, 1H& 13C NMR and mass spectra. The DNA-binding properties of the Ruthenium(II) complexes were investigated by spectrophotometric methods, viscosity measurements and light switch studies. These three complexes have been focused on photo activated cleavage studies with pBR-322 and antimicrobial studies. Experimental results indicate that the three complexes intercalate into DNA base pairs and follows the order of 1?>?2?>?3 respectively. Molecular docking studies also support the DNA interactions with complexes through hydrogen bonding and vander Waal’s interactions. Cytotoxicity studies with Hela cell lines has been revealing about anti tumor activity of these complexes.  相似文献   

17.
The reductive and the oxidative electron-transfer photochemical reaction system of light-irradiated the mix solutions of Ru(bpy)3 2+ with [Fe(CN)6]4–, [Fe(CN)6]3–, [Fe(CN)5NO]2– and PB (Prussian Blue) have been studied. The double complexes which isolated from the precipitates of the photochemical reaction have been identified by means of Mössbauer spectroscopy. In order to clarify the chemical states of these isolated double complexes, we have (prepared and) studied Mössbauer spectra of the double complexes such as [Ru(bpy)3]3[Fe(CN)6]2.14H2O, [Ru(bpy)3]2[Fe(CN)6].10H2O, [Ru(bpy)3][Fe(CN)5NO].4H2O, and [Ru(bpy)3][PB]2.xH2O.  相似文献   

18.
Tris(2,2′‐bipyridine)ruthenium(II) complex‐based carbonic anhydrase (CA) inhibitors, [Ru(bpy)2(bpydbs)]2+ {bpy = 2,2′‐bipyridine and bpydbs = 2,2′‐bipyridinyl‐4,4′‐dicarboxilic acid bis[(2‐{2‐[2‐(4‐sulfamoylbenzoylamino)ethoxy]ethoxy}ethyl)amide]} and [Ru(bpydbs)3]2+, tethering plural benzenesulfonamide groups have been prepared. The CA catalytic activity was effectively suppressed by these synthetic [Ru(bpy)2(bpydbs)]2+ and [Ru(bpydbs)3]2+ inhibitors, and their dissociation constants at pH = 7.2 and at 25°C were determined to be KI = 0.93 ± 0.02 μM and KI = 0.24 ± 0.03 μM, respectively. Next, 2 photoinduced electron‐transfer (ET) systems comprising a Ru2+‐CA complex and an electron acceptor, such as chloropentaamminecobalt(III) ([CoCl(NH3)5]2+) or methylviologen (MV2+) were studied. In the presence of CA and a sacrificial electron acceptor, such as pentaamminechlorocobalt(III) complex, the photoexcited triplet state of 3([Ru(II)]2+)* was quenched through an intermolecular photoinduced ET mechanism. In case of the [Ru(bpydbs)3]2+‐CA‐MV2+ system, the photoexcited triplet state of 3([Ru(bpydbs)3]2+)* was quenched by sacrificial quencher through an intermolecular photoinduced ET mechanism, giving the oxidized [Ru(bpydbs)3]3+. Then the following intramolecular ET from the amino acid residue, Tyr6, near the active site of CA proceeded. We observed a transient absorption around at 410 nm, arising from the formation of a Tyr?+ in the [Ru(bpydbs)3]2+‐CA‐MV2+ system. These artificial Ru(II)‐CA systems may clearly demonstrate both intermolecular and intramolecular photoinduced ET reactions of protein and could be one of the interesting models of the ET proteins. Their photophysical properties and the detailed ET mechanisms are discussed in order to clarify the multistep ET reactions.  相似文献   

19.
The absorption, luminescence, and luminescence excitation spectra of ruthenium(II) complexes cis-[Ru(bpy)2(L)Cl]+[bpy=2,2′-bipyridyl; L=NH3, pyrazine, pyridine, 4-aminopyridine, 4-picoline, isonicotinamide, 4-cyanopyridine, 4,4′-bipyridyl, or trans-1,2-bis(4-pyridyl)ethylene] in alcoholic (4: 1 EtOH-MeOH) solutions are studied. At 77 K, the quantum yields and decay times of the luminescence of the complexes are measured and the deactivation rate constants of the lowest electronically excited metal-to-ligand charge transfer state (3MLCT) are determined. The linear correlation between the energy of the lowest state 3MLCT d π(Ru)>π*(bpy) of the cis-[Ru(bpy)2(L)Cl]+ complexes and the parameter pKa of the free 4-substituted pyridines and pyrazine used as ligands is established.  相似文献   

20.
In this study, poly(P-phenylenediamine/ZnO) (PpPD/ZnO) nanocomposite (NC) under ultrasonic conditions was synthesized and characterized. The presence of zinc oxide nanoparticles changed the morphology of PpPD considerably as confirmed by SEM observations. Hydrazine electrooxidation at novel modified carbon paste electrodes (CPE) with supported NC was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA) techniques. Obtained results showed that the NC increases the surface catalytic activity of CPE toward hydrazine electrooxidation. The electrocatalytic current density increased linearly with hydrazine concentration, and the detection limit and sensitivity are determined to be 24 μM and 0.172 mA cm?2 mM?1, respectively. As revealed by the EIS measurements, the increased conductivity and decreased R ct are owing to the presence of ZnO NPs in the PpPD matrix. The CA results indicated that hydrazine electrooxidation results in higher steady-state current density on CPE/PpDP/ZnO electrode system compared to the CPE/PpDP and CPE electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号