首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
21世纪毛细管电泳技术及应用发展趋势   总被引:8,自引:0,他引:8  
在21世纪,毛细管电泳技术面临着新的挑战和机遇,在其检测手段,仪器的小型化和集成化,以及分离模式上都存在着极大的发展空间,文中针对这三方面的发展趋势和毛细管电泳的应用进行了讨论。  相似文献   

2.
本文提出毛细管电泳-间接激光光热干涉检测新方法。采用吸收系数大、吸收波长与泵浦激光(He-Ne)波长匹配性能较好的亚甲蓝溶液为背景电解质溶液,加入乙醇减少了毛细管壁对亚甲蓝的吸附作用。并将间接光热干涉检测法用于氨基酸毛细管电泳分离检测,对赖氨酸检测限达5×10-6mol/L(S/N=2).  相似文献   

3.
本文从细胞悬浮液制备、单个细胞进样技术、细胞溶解技术、分离模式、检测方法和应用新进展6个方面对单细胞毛细管电泳分析进行了全面评述.重点介绍了单个细胞进样技术及检测方法的最新进展,并对单细胞毛细管电泳分析的未来发展方向进行了展望.  相似文献   

4.
Narrow peaks are important to high‐resolution and high‐speed separation of DNA fragments by capillary electrophoresis and microchip capillary electrophoresis. Detection cell length is one of the broadening factors, which is often ignored in experiments. However, is it always safe to neglect detection cell length under any condition? To answer this question, we investigated the influence of detection cell length by simulation and experiments. A parameter named as detection cell length ratio was proposed to directly compare the detection cell length and the spatial length of sample band. Electrophoretic peaks generated by various detection cell length ratios were analyzed. A simple rule to evaluate the peak broadening due to detection cell length was obtained. The current states of the detection cell length of detection system and their reliabilities in capillary electrophoresis and microchip capillary electrophoresis were analyzed. Microchip capillary electrophoresis detection with an ultra‐small detection cell length of 0.36 μm was easily achieved by using an image sensor.  相似文献   

5.
DNA adducts are thought to be crucial to the initiation of mutational and carcinogenic processes. Polycyclic aromatic hydrocarbons (PAHs) have been identified as one major source of carcinogenic risk since they can bind to DNA thus forming an adduct. Quantification of this adduct is important because it may correlate to the risk for cancer development. In this study, the adduct formed between 2'-deoxyguanosine 5'-monophosphate and benzo[ a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) was analyzed by capillary electrophoresis. Both capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MECC) modes with laser-induced fluorescence detection were used for the separation and analysis of DNA adducts. The exploration of capillary electrophoresis in several modes provided different separation mechanisms in which the stereochemical forms of the adduct could be separated. The best result obtained was using a coated fused-silica capillary in Tris-TAPS buffer, which provided high sensitivity with a detection limit of 2.5x10(-9) mol L(-1). MECC separation of the BPDE adduct, although less sensitive, provided an efficient enantioselective separation option.  相似文献   

6.
毛细管电泳多脉冲溶出安培检测方法的研究   总被引:1,自引:0,他引:1  
 摘要:将用于电化学检测的三电极与驱动电泳分离的电化学系统的接地电极在毛细管出口处的外面作适当的布置,可最大程度地减少高压电场对安培检测的干扰。多阶脉冲溶出安培检测方式提高了电流检测灵敏度,并可在一定程度上通过不同的溶出电位鉴别分离组分。将该方法应用于铜、锌、铅、铊、镉等离子的毛细管电泳分离,得到了较满意的结果。  相似文献   

7.
Among electrochemical detection methods in capillary electrophoresis, conductometric methods are of specific interest for the determination of inorganic species. This is due to the fact that inorganic ions exhibit a high equivalent conductivity which corresponds to the analytical signal in conductivity detection. Indirect optical absorption methods, which are widely used in capillary electrophoretic ion analyses, become less sensitive with smaller capillary dimensions and thus have disadvantages in electrokinetic chip separation technologies.Conductivity detection for capillary electrophoresis is performed either through galvanic contact or in a contactless mode. Techniques using a galvanic contact of the sample ions with the measuring electrode are performed either on-capillary without decoupling of the separation high voltage, or off-capillary after grounding the separation voltage in order to avoid interferences. This technology is specifically important when a suppressor is used prior to detection. Most contactless methods use oscillometric techniques in order to obtain the analytical signal.This review discusses the theoretical and instrumental background of conductivity detection in capillary electrophoresis and reports on recent aspects and applications using conductometric detection methods for capillary zone electrophoresis.  相似文献   

8.
Immunoassays are commonly used in bioresearch for the detection and quantification of small proteins and macromolecules in biological fluids and other complex matrices. In this report, a competitive immunoassay using capillary electrophoresis (CE) with laser-induced fluorescence was developed for methionine-enkephalin (ME). The method is based on the competitive reaction between the ME and fluorescein conjugated ME (ME-F) with anti-ME antibody, capillary electrophoresis separation of the ME-antibody bound and free ME-F, followed by the laser-induced fluorescence detection of the fluorescent species. With the optimized separation conditions, it was possible to separate the antibody bound and free fluorescien conjugated ME by a capillary electrophoresis-laser-induced fluorescence (CE-LIF) analysis using an uncoated fused-silica capillaries. The results concluded that the assay specificity, selectivity and accuracy were excellent.  相似文献   

9.
生物分子之间的特异性相互作用是生物界普遍存在的现象.研究这些现象,对揭示生物化学作用机理、药物研究等具有重要意义.结合常数Kb是描述生物分子之间特异性相互作用最主要的参数,测定结合常数的传统方法包括平衡透析、凝胶过滤色谱和分光光度法等[1].亲和毛细管电泳(Affinitycapillaryelectrophoresis,简称ACE)是近几年发展起来的毛细管电泳的一个分支,在研究生物分子之间特异性相互作用等方面有很好的应用前景[2~5].与上述传统方法相比,ACE具有测定速度快,样品用量少,有多…  相似文献   

10.
Determination of tea catechins   总被引:5,自引:0,他引:5  
An overview of analytical methods for the measurement of biologically important tea catechins is presented. Liquid chromatography and capillary electrophoresis are the most cited techniques for catechin separation, identification and quantitation. Liquid chromatography with ultraviolet detection is frequently used; however, mass spectrometry, electrochemical, fluorescence and chemiluminescence detection are also utilized in cases where more sensitive or selective detection is needed. Two modes of capillary electrophoresis, capillary zone electrophoresis and micellar electrokinetic capillary chromatography, have been employed for the determination of catechins. Both modes of capillary electrophoresis are based on ultraviolet detection. Additional analytical techniques, such as gas chromatography, thin-layer chromatography, paper chromatography, spectrophotometry, biosensing, chemiluminescence and nuclear magnetic resonance spectroscopy have also been utilized for the determination of catechins and are reviewed herein.  相似文献   

11.
Ueda M  Kiba Y  Abe H  Arai A  Nakanishi H  Baba Y 《Electrophoresis》2000,21(1):176-180
A laser-induced fluorescence detection system coupled with a highly sensitive silicon-intensified target (SIT) camera is successfully applied to the imaging of a band for DNA fragment labeling by fluorescence dye in a microchannel, and to the visualizing of the separation process on a microfabricated chip. We demonstrated that an only 6 mm separation channel is sufficient for the separation of triplet repeat DNA fragment and DNA molecular marker within only 12 s. The separation using the microfabricated capillary electrophoresis device is confirmed to be at least 18 times faster than the same separation carried out by conventional capillary electrophoresis with 24.5 cm effective length. The use of a short capillary with 8.5 cm effective length is also efficient for fast separation of DNA; however, the microchip technology is even faster than capillary electrophoresis using a short capillary.  相似文献   

12.
微量金属元素的毛细管电泳分析方法及应用   总被引:9,自引:1,他引:8  
屈锋  王敏  林金明 《分析化学》2005,33(4):562-568
综述了毛细管电泳分析微量金属元素的基本原理、分离模式(CZE、MKEC、非水电泳、芯片分离等)、检测方法(紫外、荧光、化学发光、安培、电导、质谱联用技术)等的进展和该技术在环境、生物医学领域的研究与应用。引用文献94篇。  相似文献   

13.
It is shown that organo-aqueous separation buffers show much promise when used in capillary electrophoresis separations with photothermal (thermal lens) detection systems. Acetonitrile–water and methanol–water mixtures were selected, as conventionally used in capillary electrophoresis. It is shown that, despite more sophisticated experimental conditions (significant heat outflow from the capillary body) and peak detection, the theoretical ratio of the thermal lens signal for a binary mixture to the thermal lens signal for an aqueous solution (or the corresponding ratio obtained experimentally under bulk batch conditions) can be used to predict the sensitivity of thermal lens detection in capillary electrophoresis. The limits of detection for 2-, 3-, and 4-nitrophenols selected as model compounds in 70% v/v acetonitrile separation buffers are 1×10−6 M, 1×10−6 M and 3×10−7 M, respectively, and are therefore decreased by a factor of six compared to thermal lens detection in aqueous separation buffers. The overall increase in the thermal lens detection sensitivity in a 100% ACN buffer is a factor of 13.   相似文献   

14.
An in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2‐morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow‐injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r2) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time.  相似文献   

15.
Z Zhou  K Wang  X Yang  S Huang  L Zhou  D Qin  L Du 《The Analyst》2001,126(11):1838-1840
A novel method for the synchronization of separation and determination is described, in which a mode-filtered light detector is used as an online detector in capillary electrophoresis. An instrument is described which has been developed for this purpose. The round capillary used in conventional capillary electrophoresis is replaced by an annular column, which is constructed from a naked optical fibre inserted into a fused-silica capillary. In fact, the annular electrophoresis column itself forms part of the mode-filtered light sensor. Along the side of the annular column are several detection channels for gathering and transmitting the mode-filtered light to a charge-coupled device (CCD). Every channel provides information on the sample from the point at which it is located. Using capillary isotachophoresis incorporating the annular column, the analytes in a sample containing alanine (10.0 mM) and glycine (9.7 mM) were simultaneously separated and determined using multichannel mode-filtered light detection with a detection limit of 1.5 mM.  相似文献   

16.
Chen R  Cheng H  Wu W  Ai X  Huang W  Wang Z  Cheng J 《Electrophoresis》2007,28(19):3347-3361
Capillary electrophoresis has become a widely useful analytical technology. Amperometric detection is extensively employed in capillary electrophoresis for its many inherent virtues, such as rapid response, remarkable sensitivity, and low cost of both detectors and instrumentations. Analysis of inorganic and small organic ions by capillary electrophoresis is an important research field. This review focuses on the recent developments of capillary electrophoresis coupled with amperometric detection for analysis of inorganic and small organic ions. Advancements in electrophoresis separation modes, amperometric detection modes, working electrodes, and applications of inorganic ions, amino acids, phenols, and amines are discussed.  相似文献   

17.
The present review summarizes scientific reports from between 2010 and 2019 on the use of capillary electrophoresis to quantify active constituents (i.e., phenolic compounds, coumarins, protoberberines, curcuminoids, iridoid glycosides, alkaloids, triterpene acids) in medicinal plants and herbal formulations. The present literature review is founded on PRISMA guidelines and selection criteria were formulated on the basis of PICOS (Population, Intervention, Comparison, Outcome, Study type). The scrutiny reveals capillary electrophoresis with ultraviolet detection as the most frequently used capillary electromigration technique for the selective separation and quantification of bioactive compounds. For the purpose of improvement of resolution and sensitivity, other detection methods are used (including mass spectrometry), modifiers to the background electrolyte are introduced and different extraction as well as pre-concentration techniques are employed. In conclusion, capillary electrophoresis is a powerful tool and for given applications it is comparable to high performance liquid chromatography. Short time of execution, high efficiency, versatility in separation modes and low consumption of solvents and sample make capillary electrophoresis an attractive and eco-friendly alternative to more expensive methods for the quality control of drugs or raw plant material without any relevant decrease in sensitivity.  相似文献   

18.
The use of capillary zone electrophoresis (CZE) and capillary zone electrophoresis/mass spectrometry (CZE/MS) has been demonstrated, in principle, for the separation of nicotine and nicotine metabolites. The buffer system developed for separation and detection by CZE/UV was modified for use in CZE/MS analysis. Several of the metabolites are isobaric and tandem mass spectrometric (MS/MS) techniques have been used to differentiate such analytes.  相似文献   

19.
Paracetamol, caffeine and ibuprofen are found in over‐the‐counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high‐performance liquid chromatography with diode‐array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high‐performance liquid chromatography with diode‐array detection was achieved on a C18 column (250×4.6 mm2, 5 μm) with a gradient mobile phase comprising 20–100% acetonitrile in 40 mmol L?1 phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused‐silica capillary (40 cm length, 50 μm i.d.) using 10 mmol L?1 3,4‐dimethoxycinnamate and 10 mmol L?1 β‐alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 μmol L?1 by liquid chromatography and 39, 32, and 49 μmol L?1 by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92–107% for both proposed methods.  相似文献   

20.
Capillary electrophoresis coupled online with mass detection is a modern tool for analyzing wide ranges of compounds in complex samples, including urine. Capillary electrophoresis with mass spectrometry allows the separation and identification of various analytes spanning from small ions to high molecular weight protein complexes. Similarly to the much more common liquid chromatography-mass spectrometry techniques, the capillary electrophoresis separation reduces the complexity of the mixture of analytes entering the mass spectrometer resulting in reduced ion suppression and a more straightforward interpretation of the mass spectrometry data. This review summarizes capillary electrophoresis with mass spectrometry studies published between the years 2017 and 2021, aiming at the determination of various compounds excreted in urine. The properties of the urine, including its diagnostical and analytical features and chemical composition, are also discussed including general protocols for the urine sample preparation. The mechanism of the electrophoretic separation and the instrumentation for capillary electrophoresis with mass spectrometry coupling is also included. This review shows the potential of the capillary electrophoresis with mass spectrometry technique for the analyses of different kinds of analytes in a complex biological matrix. The discussed applications are divided into two main groups (capillary electrophoresis with mass spectrometry for the determination of drugs and drugs of abuse in urine and capillary electrophoresis with mass spectrometry for the studies of urinary metabolome).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号