首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Euler approximation in state constrained optimal control   总被引:1,自引:0,他引:1  

We analyze the Euler approximation to a state constrained control problem. We show that if the active constraints satisfy an independence condition and the Lagrangian satisfies a coercivity condition, then locally there exists a solution to the Euler discretization, and the error is bounded by a constant times the mesh size. The proof couples recent stability results for state constrained control problems with results established here on discrete-time regularity. The analysis utilizes mappings of the discrete variables into continuous spaces where classical finite element estimates can be invoked.

  相似文献   


3.
Necessary optimality conditions are derived in the form of a weak maximum principle for optimal control problems with mixed state-control equality and inequality constraints. In contrast to previous work these conditions hold when the Jacobian of the active constraints, with respect to the unconstrained control variable, has full rank. A feature of these conditions is that they are stated in terms of a joint Clarke subdifferential. Furthermore the use of the joint subdifferential gives sufficiency for nonsmooth, normal, linear convex problems. The main point of interest is not only the full rank condition assumption but also the nature of the analysis employed in this paper. A key element is the removal of the constraints and application of Ekeland's variational principle.  相似文献   

4.
Abtract Various methods have been proposed for the numerical solution of optimal control problems with bounded state variables. In this paper, a new method is put forward and compared with two other methods, one of which makes use of adjoint variables whereas the other does not. Some conclusions are drawn on the usefulness of the three methods involved.  相似文献   

5.
The presence of control constraints, because they are nondifferentiable in the space of control functions, makes it difficult to cope with terminal equality constraints in optimal control problems. Gradient-projection algorithms, for example, cannot be employed easily. These difficulties are overcome in this paper by employing an exact penalty function to handle the cost and terminal equality constraints and using the control constraints to define the space of permissible search directions in the search-direction subalgorithm. The search-direction subalgorithm is, therefore, more complex than the usual linear program employed in feasible-directions algorithms. The subalgorithm approximately solves a convex optimal control problem to determine the search direction; in the implementable version of the algorithm, the accuracy of the approximation is automatically increased to ensure convergence.This work was supported by the United Kingdom Science Research Council, by the US Army Research Office, Contract No. DAAG-29-73-C-0025, and by the National Science Foundation, Grant No. ENG-73-08214-A01.  相似文献   

6.
In Part 1 of this paper, implementable and conceptual versions of an algorithm for optimal control problems with control constraints and terminal equality constraints were presented. It was shown that anyL accumulation points of control sequences generated by the algorithms satisfy necessary conditions of optimality. Since such accumulation points need not exist, it is shown in this paper that control sequences generated by the algorithms always have accumulation points in the sense of control measure, and these accumulation points satisfy optimality conditions for the corresponding relaxed control problem.This work was supported by the United Kingdom Science Research Council, by the US Army Research Office, Contract No. DAA-29-73-C-0025, and by the National Science Foundation, Grant No. ENG-73-08214-A01.  相似文献   

7.
In this paper, a method is proposed for the numerical solution of optimal control problems with terminal equality constraints. The multiplier method is employed to deal with the terminal equality constraints. It is shown that a sequence of control functions, which converges to the optimal control, is obtained by the alternate update of control functions and multipliers.The authors wish to thank Dr. N. Fujii for his most valuable comments and suggestions.  相似文献   

8.
A linear elliptic control problem with pointwise state constraints is considered. These constraints are given in the domain. In contrast to this, the control acts only at the boundary. We propose a general concept using virtual control in this paper. The virtual control is introduced in objective, state equation, and constraints. Moreover, additional control constraints for the virtual control are investigated. An error estimate for the regularization error is derived as main result of the paper. The theory is illustrated by numerical tests.  相似文献   

9.
This paper considers optimal control problems involving the minimization of a functional subject to differential constraints, terminal constraints, and a state inequality constraint. The state inequality constraint is of a special type, namely, it is linear in some or all of the components of the state vector.A transformation technique is introduced, by means of which the inequality-constrained problem is converted into an equality-constrained problem involving differential constraints, terminal constraints, and a control equality constraint. The transformation technique takes advantage of the partial linearity of the state inequality constraint so as to yield a transformed problem characterized by a new state vector of minimal size. This concept is important computationally, in that the computer time per iteration increases with the square of the dimension of the state vector.In order to illustrate the advantages of the new transformation technique, several numerical examples are solved by means of the sequential gradient-restoration algorithm for optimal control problems involving nondifferential constraints. The examples show the substantial savings in computer time for convergence, which are associated with the new transformation technique.This research was supported by the Office of Scientific Research, Office of Aerospace Research, United States Air Force, Grant No. AF-AFOSR-76-3075, and by the National Science Foundation, Grant No. MCS-76-21657.  相似文献   

10.
Local convergence of the Lagrange-Newton method for optimization problems with two-norm discrepancy in abstract Banach spaces is investigated. Based on stability analysis of optimization problems with two-norm discrepancy, sufficient conditions for local superlinear convergence are derived. The abstract results are applied to optimal control problems for nonlinear ordinary differential equations subject to control and state constraints.This research was completed while the second author was a visitor at the University of Bayreuth, Germany, supported by grant No. CIPA3510CT920789 from the Commission of the European Communities.  相似文献   

11.
In this paper we give semiconcavity results for the value function of some constrained optimal control problems with infinite horizon in a half-space. In particular, we assume that the control space is the l1-ball or the l-ball in Rn.  相似文献   

12.
In a recent, related, paper, necessary conditions in the form of a Maximum Principle were derived for optimal control problems with time delays in both state and control variables. Different versions of the necessary conditions covered fixed end-time problems and, under additional hypotheses, free end-time problems. These conditions improved on previous conditions in the following respects. They provided the first fully non-smooth Pontryagin Maximum Principle for problems involving delays in both state and control variables, only special cases of which were previously available. They provide a strong version of the Weierstrass condition for general problems with possibly non-commensurate control delays, whereas the earlier literature does so only under structural assumptions about the dynamic constraint. They also provided a new ‘two-sided’ generalized transversality condition, associated with the optimal end-time. This paper provides an extension of the Pontryagin Maximum Principle of the earlier paper for time delay systems, to allow for the presence of a unilateral state constraint. The new results fully recover the necessary conditions of the earlier paper when the state constraint is absent, and therefore retain all their advantages but in a setting of greater generality.  相似文献   

13.
This paper is concerned with necessary conditions for a general optimal control problem developed by Russak and Tan. It is shown that, in most cases, a further relation between the multipliers holds. This result is of interest in particular for the investigation of perturbations of the state constraint.  相似文献   

14.
This note presents an extension of the Miele—Cragg-Iyer-Levy augmented function method for finite-dimensional optimization problems to optimal control problems. A numerical study is provided.  相似文献   

15.
A family of optimal control problems for discrete systems that depend on a real parameter is considered. The problems are strongly convex and subject to state and control constraints. Some regularity conditions are imposed on the constraints.The control problems are reformulated as mathematical programming problems. It is shown that both the primal and dual optimal variables for these problems are right-differentiable functions of a parameter. The right-derivatives are characterized as solutions to auxiliary quadratic control problems. Conditions of continuous differentiability are discussed, and some estimates of the rate of convergence of the difference quotients to the respective derivatives are given.  相似文献   

16.
A computational algorithm for a class of time-lag optimal control problems involving control and terminal inequality constraints is presented. The convergence properties of the algorithm is also investigated. To test the algorithm, an example is solved.This work was partially supported by the Australian Research Grant Committee.  相似文献   

17.
We examine convergence of the Euler approximation to a nonlinear optimal control problem subject to mixed state-control and pure state constraints. We prove that under smoothness, independence, controllability and coercivity conditions at a reference solution of the continuous problem, there exists a locally unique solution to the Euler approximation, for sufficiently fine discretization, which converges to the reference solution with rate proportional to the mesh size.  相似文献   

18.
In this paper, we present a direct B‐spline spectral collocation method to approximate the solutions of fractional optimal control problems with inequality constraints. We use the location of the maximum of B‐spline functions as collocation points, which leads to sparse and nonsingular matrix B whose entries are the values of B‐spline functions at the collocation points. In this method, both the control and Caputo fractional derivative of the state are approximated by B‐spline functions. The fractional integral of these functions is computed by the Cox‐de Boor recursion formula. The convergence of the method is investigated. Several numerical examples are considered to indicate the efficiency of the method.  相似文献   

19.
A method of region analysis is developed for solving a class of optimal control problems with one state and one control variable, including state and control constraints. The performance index is strictly convex with respect to the control variable, while this variable appears only linearly in the state equation. The convexity or linearity assumption of the performance index or the state equation with respect to the state variable is not required.The author would like to express his sincere gratitude to Prof. R. Klötzler, Prof. E. Zeidler, Prof. H. Schumann, Prof. J. Focke, and other colleagues of the Department of Mathematics, Karl Marx University, Leipzig, GDR, for their support during his stay in Leipzig.  相似文献   

20.
This paper presents a numerical method for solving nonlinear optimal control problems including state and control inequality constraints. The method is based upon rationalized Haar functions. The differential and integral expressions which arise in the system dynamics, the performance index and the boundary conditions are converted into some algebraic equations which can be solved for the unknown coefficients. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号