首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the entanglement dynamics and decoherence of a three-qubit system under a quantum spin environment at a finite temperature in the thermodynamics limit. For the case under study, we find the evolution of pairwise entanglement depends not only on the initial states but also on the parameters related to the system and the spin environment. In addition, an undesirable entanglement sudden death occurs in the process of entanglement evolution, and this effect can be controlled by the coupling constant between two qubits, external magnetic field, and the interaction between the system and the environment.  相似文献   

2.
We study the pumped spin current of an interacting quantum dot tunnel coupled to a single lead in the presence of electron spin resonance (ESR) field. The spin decoherence in the dot is included by the Bffttiker approach. Using the nonequilibrium Green's function technique, we show that ESR-induced spin flip can generate finite spin current with no charge transport. Both the Coulomb interaction and spin decoherence decrease the amplitude of spin current. The dependence of pumped spin current on the intensity and frequency of ESR field, and the spin decoherence is discussed.  相似文献   

3.
We investigate the reduced dynamics of a central spin coupled to a spin environment with non-uniform coupling. Through using the method of time-dependent density-matrix renormalization group (t-DMRG), we nonperturbatively show the dissipative dynamics of the central spin beyond the case of uniform coupling between the central spin and the environment spins. It is shown that only when the system-environment coupling is weak enough, the central spin system shows Markovian effect and will finally reach the steady state; otherwise, the reduced dynamics is non-Markovian and exhibits a quasi-periodic oscillation. The frequency spectrum and the correlation between the central spin system and the environment are also studied to elucidate the dissipative dynamics of the central spin system for different coupling strengths.  相似文献   

4.
The decoherence process of a central spin-1/2 particle coupling to the surrounding anisotropy spin-1/2 chain in a transverse field at finite temperature is studied in this Letter. We study the Loschmidt echo(LE) of the central spin when the surrounding spin chain is in the thermal equilibrium state. Our results show that the critical enhanced decay of LE at zero temperature becomes indistinct with the temperature increasing and will be completely washed out when the temperature is high enough.  相似文献   

5.
6.
Within a gauge approach to the t-J model, we propose a new, non-BCS mechanism of superconductivity for underdoped cuprates. The gluing force of the superconducting mechanism is an attraction between spin vortices on two different Néel sublattices, centered around the empty sites described in terms of fermionic holons. The spin fluctuations are described by bosonic spinons with a gap generated by the spin vortices. Due to the no-double occupation constraint, there is a gauge attraction between holon and spinon binding them into a physical hole. Through gauge interaction the spin vortex attraction induces the formation of spin-singlet (RVB) spinon pairs with a lowering of the spinon gap. Lowering the temperature, the approach exhibits two crossover temperatures: at the higher crossover a finite density of incoherent holon pairs are formed leading to a reduction of the hole spectral weight, while at the lower crossover a finite density of incoherent spinon RVB pairs are also formed, giving rise to a gas of incoherent preformed hole pairs, and magnetic vortices appear in the plasma phase. Finally, at a even lower temperature the hole pairs become coherent, the magnetic vortices becoming dilute and superconductivity appears. The superconducting mechanism is not of BCS-type since it involves a gain in kinetic energy (for spinons) coming from the spin interactions.  相似文献   

7.
We present numerical calculations of the spin transfer torque resulting in current-induced domain wall motion. Rather than the conventional micromagnetic finite difference or finite element method, we use an atomistic/classical Heisenberg spin model approach, which is well suited to study geometrically confined domain walls. We compute the behaviour of domain walls in a one dimensional chain when currents are injected using adiabatic and non-adiabatic spin torque terms. Our results are compared to analytical calculations and are found to agree very well for small current densities. At larger current densities deviations are observed, which can be attributed to the approximations used in the analytical calculations.  相似文献   

8.
We consider an Ising competitive model defined over a triangular Husimi tree where loops, responsible for an explicit frustration, are even allowed. We first analyze the phase diagram of the model with fixed couplings in which a “gas of noninteracting dimers (or spin liquid) — ferro or antiferromagnetic ordered state” zero temperature transition is recognized in the frustrated regions. Then we introduce the disorder for studying the spin glass version of the model: the triangular ±J model. We find out that, for any finite value of the averaged couplings, the model exhibits always a finite temperature phase transition even in the frustrated regions, where the transition turns out to be a glassy transition. The analysis of the random model is done by applying a recently proposed method which allows us to derive the critical surface of a random model through a mapping with a corresponding nonrandom model.  相似文献   

9.
We study an analytically solvable model for decoherence of a two spin system embedded in a large spin environment. As a measure of entanglement, we evaluate the concurrence for the Bell states (Einstein-Podolsky-Rosen pairs). We find that while for two separate spin baths all four Bell states lose their coherence with the same time dependence, for a common spin bath, two of the states decay faster than the others. We explain this difference by the relative orientation of the individual spins in the pair. We also examine how the Bell inequality is violated in the coherent regime. Both for one bath and two bath cases, we find that while two of the Bell states always obey the inequality, the other two violate the inequality at early times.  相似文献   

10.
Recently new novel magnetic phases were shown to exist in the asymptotic steady states of spin systems coupled to dissipative environments at zero temperature. Tuning the different system parameters led to quantum phase transitions among those states. We study, here, a finite two-dimensional Heisenberg triangular spin lattice coupled to a dissipative Markovian Lindblad environment at finite temperature. We show how applying an inhomogeneous magnetic field to the system at different degrees of anisotropy may significantly affect the spin states, and the entanglement properties and distribution among the spins in the asymptotic steady state of the system. In particular, applying an inhomogeneous field with an inward (growing) gradient toward the central spin is found to considerably enhance the nearest neighbor entanglement and its robustness against the thermal dissipative decay effect in the completely anisotropic (Ising) system, whereas the beyond nearest neighbor ones vanish entirely. The spins of the system in this case reach different steady states depending on their positions in the lattice. However, the inhomogeneity of the field shows no effect on the entanglement in the completely isotropic (XXX) system, which vanishes asymptotically under any system configuration and the spins relax to a separable (disentangled) steady state with all the spins reaching a common spin state. Interestingly, applying the same field to a partially anisotropic (XYZ) system does not just enhance the nearest neighbor entanglements and their thermal robustness but all the long-range ones as well, while the spins relax asymptotically to very distinguished spin states, which is a sign of a critical behavior taking place at this combination of system anisotropy and field inhomogeneity.  相似文献   

11.
A Bethe-Peierls treatment to dilution in frustrated magnets and spin liquids is given. A spin glass phase is present at low temperatures and close to the percolation point as soon as frustration takes a finite value in the dilute magnet model; the spin glass phase is reentrant inside the ferromagnetic phase. An extension of the model is given, in which the spin glass/ferromagnet phase boundary is shown not to reenter inside the ferromagnetic phase asymptotically close to the tricritical point whereas it has a turning point at lower temperatures. We conjecture similar phase diagrams to exist in finite dimensional models not constraint by a Nishimori's line. We increase frustration to study the effect of dilution in a spin liquid state. This provides a “minimal” ordering by disorder from an Ising paramagnet to an Ising spin glass. Received 9 April 1999 and Received in final form 27 September 1999  相似文献   

12.
The quantum entanglement,discord,and coherence dynamics of two spins in the model of a spin coupled to a spin bath through an intermediate spin are studied.The effects of the important physical parameters including the coupling strength of two spins,the interaction strength between the intermediate spin and the spin bath,the number of bath spins and the temperature of the system on quantum coherence and correlation dynamics are discussed in different cases.The frozen quantum discord can be observed whereas coherence does not when the initial state is the Bell-diagonal state.At finite temperature,we find that coherence is more robust than quantum discord,which is better than entanglement,in terms of resisting the influence of environment.Therefore,quantum coherence is more tenacious than quantum correlation as an important resource.  相似文献   

13.
We study the decoherence of a spin-1/2 induced by an environment which is on the verge of a continuous phase transition. We consider spin environments described by the ferromagnetic and antiferromagnetic Heisenberg models on a square lattice. As is well known, these two-dimensional systems undergo a continuous phase transition at zero temperature, where the spins order spontaneously. For weak coupling of the central spin to these baths, we find that as one approaches the transition temperature, critical fluctuations make the central spin decohere faster. Furthermore, the decoherence is maximal at zero temperature as signaled by the divergence of the Markovian decoherence rate.  相似文献   

14.
We investigate the ground-state magnetic long-range order of quasi-one-dimensional quantum Heisenberg antiferromagnets for spin quantum numbers s = 1/2 and s = 1. We use the coupled cluster method to calculate the sublattice magnetization and its dependence on the inter-chain coupling J. We find that for the unfrustrated spin-1/2 system, an infinitesimal inter-chain coupling is sufficient to stabilize magnetic long-range order, in agreement with results obtained by other methods. For s = 1, we find that a finite inter-chain coupling is necessary to stabilize magnetic long-range order. Furthermore, we consider a quasi one-dimensional spin-1/2 system, where a frustrating next-nearest neighbor in-chain coupling is included. We find that for stronger frustration as well, a finite inter-chain coupling is necessary to have magnetic long-range order in the ground state, and that the strength of the inter-chain coupling necessary to establish magnetic long-range order is related to the size of the spin gap of the isolated chain.  相似文献   

15.
In this paper we study the dynamics of the two-dimensional XY model with single-ion anisotropy, and spin S = 1, in the large D phase, and low temperatures, using the bond operator formalism. The in-plane structure factor is a delta function. The out of plane shows a three peak structure, which merges in a single peak at the Brillouin zone boundary. We analyze also spin currents generated by a magnetic field gradient. The spin conductivity is calculated, at finite temperature, using the Kubo formula. The model shows unconventional ballistic spin transport at finite temperature. The computed spin conductivity exhibits a nonzero Drude weight at finite temperature. For ω< 2m, where m is the energy gap, the spin conductivity is described solely by the Drude weight. There is a regular contribution to the spin conductivity for ω> 2m, which persist in the zero temperature limit. The conductivity at the critical point, and for small frequencies, is (gμB)2/ħ times a universal scaling function of ħω/kB T.  相似文献   

16.
Taking the decoherence effect due to population relaxation into account, we investigate the entanglement properties for two qubits in the Heisenberg XY interaction and subject to an external magnetic field. It is found that the phenomenon of entanglement sudden death (ESD) as well as sudden birth (ESB) appear during the evolution process for particular initial states. The influence of the external magnetic field and the spin environment on ESD and ESB are addressed in detail. It is shown that the concurrence, a measure of entanglement, can be controlled by tuning the parameters of the spin chain, such as the anisotropic parameter, external magnetic field, and the coupling strength with their environment. In particular, we find that a critical anisotropy constant exists, above which ESB vanishes while ESD appears. It is also notable that stable entanglement, which is independent of different initial states of the qubits, occurs even in the presence of decoherence.  相似文献   

17.
The Bethe lattice spin glass revisited   总被引:2,自引:0,他引:2  
So far the problem of a spin glass on a Bethe lattice has been solved only at the replica symmetric level, which is wrong in the spin glass phase. Because of some technical difficulties, attempts at deriving a replica symmetry breaking solution have been confined to some perturbative regimes, high connectivity lattices or temperature close to the critical temperature. Using the cavity method, we propose a general non perturbative solution of the Bethe lattice spin glass problem at a level of approximation which is equivalent to a one step replica symmetry breaking solution. The results compare well with numerical simulations. The method can be used for many finite connectivity problems appearing in combinatorial optimization. Received 27 September 2000  相似文献   

18.
19.
We investigate the entanglement dynamics of a two-spin-qubit system coupled to a spin environment with nonuniform coupling through using the time-dependent density-matrix renormalization group method. We show that the entanglement generation and decay depend on the number of environment spins, the coupling strength between the central spin system and the environment, and the initial state of the central spin system.  相似文献   

20.
The geometric phase of a central qubit coupling to the surrounding XY chain in a transverse field at finite temperature is studied in this Letter. An explicit analytical expression of the geometric phase for coupled qubit is obtained in the weak coupling limit when the surrounding spin chain is in a thermal equilibrium state. It is shown that the GP displays dramatic change around the quantum phase transition points of the spin chain at zero and a finite range of temperature by numerical analysis. The result reveals that the GP can be used as a tool to detect QPT when the spin chain system is at finite temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号