首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crown ether isocyanide CNR (R = benzo-15-crown-5) has been synthesized by dehydration of the corresponding formamide. Substitution reactions with the appropriate gold(I) precursors afford the luminescent mononuclear derivatives [AuX(CNR)] (X = Cl, C 6F 5, Br, I), [Au(C 6F 4OCH 2C 6H 4OC nH 2 n+1 - p)(CNR)] ( n = 4, 8, 10, 12), and [Au(C 6F 4OCH 2C 6H 2-3,4,5-(OC n H 2 n+1 ) 3(CNR)] ( n = 4, 8, 12). X-ray diffraction studies of [AuCl(CNR)] show the molecules associated in a tetranuclear manner with an antiparallel orientation and gold-gold distances of 3.420 and 3.427 A (Au...Au...Au angles are 121.2 degrees ). These tetranuclear units generate infinite zigzag chains through longer Au...Au distances of 3.746 A and weak C-H...O nonclassic interactions. Nucleophilic attack to the coordinated isocyanide in [AuCl(CNR)] by methanol or a primary amine produces the carbene derivatives [AuCl{C((NHR)(OMe)}] and [AuCl{C(NHR')(NHR)}] (R' = Me, n-Bu). The ether crown in these complexes is able to coordinate sodium from NaClO 4, affording the corresponding bimetallic complexes (Na/Au = 1:1). The derivatives containing one alkoxy chain are liquid crystals, displaying a smectic C mesophase (for n > 4), whereas the trialkoxy derivatives display unidentified or smectic C mesophases, depending on the alkyl chain length. After complexation of sodium salts, the mesogenic behavior is lost. All of the derivatives are luminescent at room temperature in the solid state with emission maxima in the range 405-550 nm; they emit at 77 K from 410 to 572 nm. Only the ligand and the fluoroaryl complexes emit in solution at room temperature, but all of the compounds are luminescent at 77 K. Very interestingly, some fluoroaryl derivatives with alkoxy chains are luminescent not only in the solid, and in solution, but also in the mesophase, and in the isotropic liquid at moderate temperatures. These are the first metal complexes ever reported to show luminescence in the isotropic liquid state.  相似文献   

2.
The reaction of the complex [Au2Ag2(C6F5)4)N[triple bond]CCH3)2]n (1) with 1 equiv of CuCl in the presence of 1 equiv of pyrimidine ligand leads to the formation of the heteronuclear Au(I)-Cu(I) organometallic polymer [Cu{Au(C6F5)2}(N[triple bond]CCH3)(mu2-C4H4N2)]n (2) through a transmetalation reaction. Complex 2 displays unprecedented unsupported Au(I)...Cu(I) interactions of [Au(C6F5)2]- units with the acid Cu(I) sites in a [Cu(N[triple bond]CCH3)(mu2-pyrimidine)]n+(n) polymeric chain. Complex 2 has a rich photophysics in solution and in the solid state.  相似文献   

3.
A series of protected and terminal dialkynes with extended pi-conjugation through the fused oligothienyl linker unit in the backbone, 2,5-bis(trimethylsilylethynyl)thieno[3,2-b]thiophene 1a, 5,5'-bis(trimethylsilylethynyl)dithieno[3,2-b:2',3'-d]thiophene 1b, 2,5-bis(ethynyl)thieno[3,2-b]thiophene 2a, 5,5'-bis(ethynyl)dithieno[3,2-b:2',3'-d]thiophene 2b, has been synthesized and characterised. The digold alkynyl complexes [(Ph3P)Au(C[triple bond]C)(C6H2S2)(C[triple bond]C)Au(PPh3)] 3a and [(Ph3P)Au(C[triple bond]C)(C8H2S3)(C[triple bond]C)Au(PPh3)] 3b have then been prepared by the reaction of two equivalents of Ph3PAuCl and a methanolic KOH solution of 1a and 1b, respectively. The complexes have been characterised spectroscopically. The crystal structures show that the gold centres adopt a linear two-coordinate geometry appropriate for Au(i) complexes. Within the crystals adjacent molecules are linked by Au...S intermolecular interactions in the range 3.48-3.89 A, but there are no short Au...Au contacts. The absence of Au...Au interactions in solution is confirmed by UV/visible absorption and emission spectroscopy, the spectra being dominated by ligand-centred pi-pi* interactions.  相似文献   

4.
A series of alkynethiolate gold(I) derivatives have been synthesised by the cleavage of 4-monosubstituted 1,2,3-thiadiazoles in the presence of strong bases. The syntheses of the 1.2,3-thiadiazoles with p-cyanophenyl, p-tolyl, 2-thienyl, 3-thienyl and 9,9-dimethylfluoren-2-yl fragments are also described. All the complexes have been characterised by spectroscopic techniques and the complexes [Au(p-CH3-C6H4-C[triple bond]C-S)PPh3], [Au(3-C4H3S-C[triple bond]C-S)PPh3] and PPN[Au(p-CH3-C6H4-C[triple bond]C-S)(C6F5)] by X-ray analysis. The electrochemically polymerizable mononuclear bis(alkynethiolate) gold(I) complex PPN[Au(3-C4H3S-C[triple bond]C-S)2] is also described, including its electropolymerization and electrochemical properties.  相似文献   

5.
The facile syntheses and the structures of five new Cu(I) alkynyl clusters, [Cu(12)(hfac)(8)(C[triple chemical bond]CnPr)(4)(thf)(6)]xTHF (1), [Cu(12)(hfac)(8)(C[triple chemical bond]CtBu)(4)] (2), [Cu(12)(hfac)(8)(C[triple chemical bond]CSiMe(3))(4)] (3), [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)]/[Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(3)(C[triple chemical bond]CnPr)(diethyl ether)] (4) and [Cu(10)(hfac)(6)(C[triple chemical bond]CtBu)(4)(diethyl ether)] (5) are reported, in which hfacH=1,1,1,5,5,5-hexafluoropentan-2,4-dione. The first independent molecule found in the crystals of 4 (4 a) proved to be chemically identical to 5. The Cu(10) and Cu(12) cores in these clusters are based on a central "square" Cu(4)C(4) unit. Whilst the connectivities of the Cu(10) or Cu(12) units remain identical the geometries vary considerably and depend on the bulk of the alkynyl group, weak coordination of ether molecules to copper atoms in the core and CuO intramolecular contacts formed between Cu-hfac units on the periphery of the cluster. Similar intermolecular contacts and interlocking of Cu-hfac units are formed in the simple model complex [Cu(2)(hfac)(2)(HC[triple chemical bond]CtBu)] (6). When linear alkynes, C(n)H(2n+1)C[triple chemical bond]CH, are used in the synthesis and non-coordinating solvents are used in the workup, further association of the Cu(4)C(4) cores occurs and clusters with more than eighteen copper atoms are isolated.  相似文献   

6.
This work describes the synthesis of cis-[Pt(C[triple bond]CPh)2(Hdmpz)2] (1) and its use as a precursor for the preparation of homo- and heteropolynuclear complexes. Double deprotonation of compound 1 with readily available M(I) (M = Cu, Ag, Au) or M(II) (M = Pd, Pt) species affords the discrete hexanuclear clusters [{PtM2(mu-C[triple bond]CPh)2(mu-dmpz)(2)}(2)] [M = Cu (2), Ag (3), Au (4)], in which both "Pt(C[triple bond]CPh)2(dmpz)(2)" fragments are connected by four d(10) metal centers, and are stabilized by alkynyl and dimethylpyrazolate bridging ligands, or the trinuclear complexes [Pt(mu-C[triple bond]CPh)2(mu-dmpz)(2){M(C/\P)}2] (M = Pd (5), Pt (6); C/\P = CH(2)-C(6)H(4)-P(o-tolyl)2-kappaC,P), respectively. The X-ray structures of complexes 1-4 and 6 are reported. The X-ray structure of the platinum-copper derivative 2 shows that all copper centers exhibit similar local geometry being linearly coordinated to a nitrogen atom and eta(2) to one alkynyl fragment. However in the related platinum-silver (3) and platinum-gold (4) derivatives the silver and gold atoms present three different coordination environments. The complexes have been studied by absorption and emission spectroscopy. The hexanuclear complexes exhibit bright luminescence in the solid state and in fluid solution (except 4 in the solid state at 298 K). Dual long-lived emission is observed, being clearly resolved in low-temperature rigid media. The low-energy emission is ascribed to MLM'CT Pt(d)/pi(C[triple bond]CPh)-->Pt(p(z))/M'(sp)/pi*(C[triple bond]CPh) modified by metal-metal interactions whereas the high-energy emission is tentatively attributed to an emissive state derived from dimethylpyrazolate-to-metal (d(10)) LM'CT transitions pi(dmpz)-->M'(d(10)).  相似文献   

7.
The gold(I) selenolate compound [Au(2)(SePh)(2)(mu-dppf)] (dppf = 1,1'-bis(diphenylphosphino)ferrocene) has been prepared by reaction of [Au(2)Cl(2)(mu-dppf)] with PhSeSiMe(3) in a molar ratio 1:2. This complex reacts with gold(I) or gold(III) derivatives to give polynuclear gold(I)-gold(I) or gold(I)-gold(III) complexes of the type [Au(4)(mu-SePh)(2)(PPh(3))(2)(mu-dppf)](OTf)(2), [Au(3)(C(6)F(5))(3)(mu-SePh)(2)(mu-dppf)], or [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)], with bridging selenolate ligands. The reaction of [Au(2)(SePh)(2)(mu-dppf)] with 1 equiv of AgOTf leads to the formation of the insoluble Ag(SePh) and the compound [Au(2)(mu-SePh)(mu-dppf)]OTf. The complexes [Au(4)(C(6)F(5))(6)(mu-SePh)(2)(mu-dppf)] and [Au(2)(mu-SePh)(mu-dppf)]OTf (two different solvates) have been characterized by X-ray diffraction studies and show the presence of weak gold(I)-gold(III) interactions in the former and intra- and intermolecular gold(I)-gold(I) inter-actions in the later.  相似文献   

8.
The acetylido methyl iron(II) complexes, cis/trans-[Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1) and trans-[Fe(depe)(2)(C[triple bond]CR)(CH(3))] (2) (dmpe = 1,2-dimethylphoshinoethane; depe = 1,2-diethylphosphinoethane), were synthesized by transmetalation from the corresponding alkyl halide complexes. Acetylido methyl iron(II) complexes were also formed by transmetalation from the chloride complexes, trans-[Fe(dmpe)(2)(C[triple bond]CR)(Cl)] or trans-[Fe(depe)(2)(C[triple bond]CR)(Cl)]. The structure of trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(CH(3))] (1a) was determined by single-crystal X-ray diffraction. The methyl acetylido iron complexes, [Fe(dmpe)(2)(C[triple bond]CR)(CH(3))] (1), are thermally stable in the presence of acetylenes; however, under UV irradiation, methane is lost with the formation of a metal bisacetylide. Photochemical metathesis of cis- or trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CR)] (R = C(6)H(5) (1a), 4-C(6)H(4)OCH(3) (1b)) with terminal acetylenes was used to selectively synthesize unsymmetrically substituted iron(II) bisacetylide complexes of the type trans-[Fe(dmpe)(2)(C[triple bond]CR)(C[triple bond]CR')] [R = Ph, R' = Ph (6a), 4-CH(3)OC(6)H(4) (6b), (t)()Bu (6c), Si(CH(3))(3) (6d), (CH(2))(4)C[triple bond]CH (6e); R = 4-CH(3)OC(6)H(4), R' = 4-CH(3)OC(6)H(4), (6g), (t)()Bu (6h), (CH(2))(4)C[triple bond]CH (6i), adamantyl (6j)]. The structure of the unsymmetrical iron(II) bisacetylide complex trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(5))(C[triple bond]CC(6)H(4)OCH(3))] (6b) was determined by single-crystal X-ray diffraction. The photochemical metathesis of the bis-acetylene, 1,7-octadiyne, with trans-[Fe(dmpe)(2)(CH(3))(C[triple bond]CPh)] (1a), was utilized to synthesize the bridged binuclear species trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (11). The trinuclear species trans,trans,trans-[(C(6)H(5)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(mu-C[triple bond]C(CH(2))(4)C[triple bond]C)Fe(dmpe)(2)(C[triple bond]CC(6)H(5))] (12) was synthesized by the photochemical reaction of Fe(dmpe)(2)(C[triple bond]CPh)(C[triple bond]C(CH(2))(4)C[triple bond]CH) (6e) with Fe(dmpe)(2)(CH(3))(2). Extended irradiation of the bisacetylide complexes with phenylacetylene resulted in insertion of the terminal alkyne into one of the metal acetylide bonds to give acetylide butenyne complexes. The structure of the acetylide butenyne complex, trans-[Fe(dmpe)(2)(C[triple bond]CC(6)H(4)OCH(3))(eta(1)-C(C(6)H(5))=CH(C[triple bond]CC(6)H(4)OCH(3)))] (9a) was determined by single-crystal X-ray diffraction.  相似文献   

9.
A novel series of [PtTl(2)(C[triple chemical bond]CR)(4)](n) (n = 2, R = 4-CH(3)C(6)H(4) (Tol) 1, 1-naphthyl (Np) 2; n = infinity, R = 4-CF(3)C(6)H(4) (Tol(F)) 3) complexes has been synthesized by neutralization reactions between the previously reported [Pt(C[triple chemical bond]CR)(4)](2-) (R = Tol, Tol(F)) or novel (NBu(4))(2)[Pt(C[triple chemical bond]CNp)(4)] platinum precursors and Tl(I) (TlNO(3) or TlPF(6)). The crystal structures of [Pt(2)Tl(4)(C[triple chemical bond]CTol)(8)]4 acetone, 14 acetone, [Pt(2)Tl(4)(C[triple chemical bond]CNp)(8)]3 acetone1/3 H(2)O, 23 acetone 1/3 H(2)O and [[PtTl(2)(C[triple chemical bond]CTol(F))(4)](acetone)S](infinity) (S = acetone 3 a; dioxane 3 b) have been solved by X-ray diffraction studies. Interestingly, whereas in the tolyl (1) and naphthyl (2) derivatives, the thallium centers exhibit a bonding preference for the electron-rich alkyne entities to yield crystal lattices based on sandwich hexanuclear [Pt(2)Tl(4)(C[triple chemical bond]CR)(8)] clusters (with additional Tlacetone (1) or Tlnaphthyl (2) secondary interactions), in the C(6)H(4)CF(3) (Tol(F)) derivatives 3 a and 3 b the basic Pt(II) center forms two unsupported Pt-Tl bonds. As a consequence 3 a and 3 b form an extended columnar structure based on trimetallic slipped PtTl(2)(C[triple chemical bond]CTol(F))(4) units that are connected through secondary Tl(eta(2)-acetylenic) interactions. The luminescent properties of these complexes, which in solution (blue; CH(2)Cl(2) 1,2; acetone 3) are very different to those in solid state (orange), have been studied. Curiously, solid-state emission from 1 is dependent on the presence of acetone (green) and its crystallinity. On the other hand, while a powder sample of 3 is pale yellow and displays blue (457 nm) and orange (611 nm) emissions, the corresponding pellets (KBr, solid) of 3, or the fine powder obtained by grinding, are orange and only exhibit a very intense orange emission (590 nm).  相似文献   

10.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

11.
A series of platinum(II) terpyridyl complexes [Pt(tpy)(C triple bond C-C triple bond CH)]X, 1-X (X=OTf-; PF6-; ClO4-; BF4-; BPh4-); [Pt(tpy)(C triple bond CC6H5)]X, 2-X (X=OTf-; PF6-; ClO4-; BF4-); [Pt(tpy)(C triple bond CC6H4OCH3-4)]OTf, 3-OTf, and [Pt(4'-CH3O-tpy)(C triple bond CC6H5)]OTf, 4-OTf (tpy=2,2':6',2'-terpyridine, OTf=trifluoromethanesulfonate) were synthesized and their photophysical properties determined. Electronic absorption and emission studies showed the formation of a new band upon increasing the diethyl ether content in an acetonitrile/diethyl ether mixture. This was ascribed to the formation of complex aggregates, the solution color of which is dependent on the nature of the anions. This indicates that counter ions play an important role in governing the degree of aggregation and the extent of interactions within these aggregates. Addition of various anions to solutions of 1-OTf and 1-PF6 produced anion-induced color changes upon solvent-induced aggregation, indicating that these complexes may serve as potential colorimetric anion probes.  相似文献   

12.
The mononuclear pentafluorophenyl platinum complex containing the chelated diphenylphosphinous acid/diphenylphosphinite system [Pt(C(6)F(5)){(PPh(2)O)(2)H}(PPh(2)OH)] 1 has been prepared and characterised. 1 and the related alkynyl complex [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)OH)] 2 form infinite one-dimensional chains in the solid state based on intermolecular O-H[dot dot dot]O hydrogen bonding interactions. Deprotonation reactions of [PtL{(PPh(2)O)(2)H}(PPh(2)OH)] (L = C(6)F(5), C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh 3) with [Tl(acac)] yields tetranuclear Pt(2)Tl(2) complexes [PtL{(PPh(2)O)(2)H}(PPh(2)O)Tl](2) (L = C(6)F(5) 4, C[triple bond, length as m-dash]CBu(t), C[triple bond, length as m-dash]CPh ). The structure of the tert-butylalkynyl derivative , established by X-ray diffraction, shows two anionic discrete units [Pt(C[triple bond, length as m-dash]CBu(t)){(PPh(2)O)(2)H}(PPh(2)O)](-) joined by two Tl(i) centres via Tl-O and Pt-Tl bonds. Despite the existence of Pt-Tl interactions, they do not show luminescence.  相似文献   

13.
Dinuclear gold(I) complexes [mu-(4,4'-CN-R-NC){Au(C6F4OC4H9)}2] [R = 1,4-phenylene, n = 8; R = 4,4'-biphenylene, 2,2'-dichloro-4,4'-biphenylene, 2,2'-dimethyl-4,4'-biphenylene, n = 4,6,8,10] have been prepared and their liquid crystal behavior and optical properties studied. Although the free ligands are not mesomorphic, all the gold(I) derivatives described, except the phenylisonitrilegold(I) derivative [mu-(1,4-CN-C6H4-NC){Au(C6F4OC8H17)}2], display liquid crystal behavior, giving rise to a nematic mesophase. The transition temperatures decrease in the order 4-4'-biphenylene > 2,2'-dichloro-4-4'-biphenylene > 2,2'dimethyl-4-4'-biphenylene. All compounds show photoluminescence in the solid state and in solution. The single-crystal X-ray diffraction structures of [mu-(4,4'-CN-R-NC){Au(C6F4OCnH2n+1)}2] (R = 4-4'-biphenylene and 2,2'-dichloro-4-4'-biphenylene) have been determined confirming the rodlike structure of the molecule, with a linear coordination around the gold atoms. There are Au...Au interactions in the 2,2'-dichlorobiphenyl derivative but not in the 4-4'-biphenyl compound.  相似文献   

14.
Density functional theory and CASSCF calculations have been used to optimize the geometries of binuclear gold(I) complexes [H(3)PAu(C[triple bond]C)(n)AuPH(3)] (n=1-6) in their ground states and selected lowest energy (3)(pi pi*) excited states. Vertical excitation energies obtained by time-dependent density functional calculations for the spin-forbidden singlet-triplet transitions have exponential-decay size dependence. The predicted singlet-triplet splitting limit of [H(3)PAu(C[triple bond]C)(proportional/variant)AuPH(3)] is about 8317 cm(-1). Calculated singlet-triplet transition energies are in reasonable agreement with available experimental observations. The effect of the heavy atom Au spin-orbit coupling on the (3)(pi pi*) emission of these metal-capped one-dimensional carbon allotropes has been investigated by MRCI calculations. The contribution of the spin- and dipole-allowed singlet excited state to the spin-orbit-coupling wave function of the (3)(pi pi*) excited state makes the low-lying acetylenic triplet excited states become sufficiently allowed so as to appear in both electronic absorption and emission.  相似文献   

15.
We have synthesized and characterized a series of trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (triphos = bis(2-diphenylphosphinoethyl)phenylphosphine; X = Cl 1, Br 2, I 3, C(6)F(5) 4) and di- and trinuclear gold(III) complexes [[Au(C(6)F(5))(3)](n)(mu-triphos)] (n = 2 (5), 3 (6)). The crystal structure of 6 [[Au(C(6)F(5))(3)](3)(mu-triphos)] has been determined by X-ray diffraction studies, which show the triphosphine in a conformation resulting in very long gold-gold distances, probably associated with the steric requirements of the tris(pentafluorophenyl)gold(III) units. Complex 6 crystallizes in the triclinic space group P(-1) with a = 12.7746(16) A, b = 18.560(2) A, c = 21.750(3) A, alpha = 98.215(3) degrees, beta = 101.666(3) degrees, gamma = 96.640(3) degrees, and Z = 2. Chloride substitutions in complex 1 afford trinuclear gold(I) complexes [(AuX)(3)(mu-triphos)] (X = Fmes (1,3,5-tris(trifluoromethyl)phenyl) 7, p-SC(6)H(4)Me 8, SCN 9) and [Au(3)Cl(3)(-)(n)()(S(2)CNR(2))(n)(mu-triphos)] (R = Me, n = 3 (10), 2 (12), 1 (14); R = CH(2)Ph, n = 3 (11), 2 (13), 1 (15)). The luminescence properties of these complexes in the solid state have been studied; at low temperature most of them are luminescent, including the gold(III) derivative 6, with the intensity and the emission maxima being clearly influenced by the nature and the number of the ligands bonded to the gold centers.  相似文献   

16.
The dinuclear gold(I) dithiophosphonate complex, [Au(2)(dtp)(2)] (1), where dtp = [S(2)P(R)(OR')](-) with R = p-C(6)H(4)OCH(3); R'= c-C(5)H(9), has been synthesized and its reaction studied with the phosphine ligands PPh(3) and Ph(2)P(CH(2))(n)PPh(2) (n = 1-4). Compound 1 contains two gold atoms homobridged by the anionic dithiophosphonate ligand, forming an eight-membered ring complex in a chair form. After the reaction of 1 with diphosphine ligands, the dinuclear open-ring complexes Au(2)(dppm)(dtp)(2) (2), Au(2)(dppe)(dtp)(2) (3), Au(2)(dppp)(dtp)(2) (4), Au(2)(dppb)(dtp)(2) (5) were formed (dppm = diphenylphosphinomethane; dppe = diphenylphosphinoethane; dppp = diphenylphosphinopropane; dppb = diphenylphosphinobutane). The reaction with dppm is stoichiometry-dependent. Thus, when 1 reacts with 2 equiv of dppm, the ionic complex [Au(2)(dppm)(2)(dtp)]dtp forms. This dtp counterion was exchanged with tetrafluoroborate to yield [Au(2)(dppm)(2)(dtp)]BF(4), the crystallization of which afforded two interconvertible isomers, 6-yellow and 7-white. Reaction of 1 with PPh(3) affords the tetracoordinate mononuclear complex [Au(dtp)(PPh(3))(2)] (8). The molecular structures of 1-8 were confirmed by X-ray crystallography and show multiple coordination modes and geometries. The crystal structures of 1 and its reaction products with dppm (2, 6, 7) show short intramolecular Au.Au aurophilic bonding interactions of 2.95-3.10 A while no intermolecular interactions were discernible. However, reaction products of 1 with longer-chain Ph(2)P(CH(2))(n)PPh(2) ligands, n = 2-4, exhibit structures that lack both intra- and intermolecular Au.Au interactions.  相似文献   

17.
The first examples of insertion of a C(triple bond)C bond of an alkyne into a C(carbene)-Calpha single bond of a carbene complex (C-Calpha insertion) are reported. (prim-Alkyl)carbene complexes [(OC)(5)M=C(OEt)CH(2)R] (1 a-f; M=Cr, W; R=nPr, C(7)H(7), Ph) undergo C-Calpha insertion of electron-deficient alkynes [PhC(triple bond)CC(XEt)NMe(2)]BF(4) (5 a,b; X=O, S) to give zwitterionic carbiminium carbonylmetalates 3 a-g, which are thermally transformed into (CO)(4)M chelate carbene complexes 4 a-g by elimination of CO. The overall reaction is highly regio- and stereoselective. It involves an unprecedented metalla(di-pi-methane) rearrangement as the key step.  相似文献   

18.
Insertion of MeO(2)C-C[triple bond]C-CO(2)Me (DMAD) into the Pd-C bond of the heterodimetallic complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d(dmba-C)] (2) (dppm = Ph(2)PCH(2)PPh(2), dmba-C = metallated dimethylbenzylamine) and [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d(8-mq-C,N)] (3) (8-mq-C,N = cyclometallated 8-methylquinoline) yielded the sigma-alkenyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (7) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(CO(2)Me)[double bond, length as m-dash]C(CO(2)Me)(CH(2)C(9)H(6)N)}] (8), respectively. The latter afforded the adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{C(CO(2)Me)=C(CO(2)Me)(CH(2)C(9)H(6)N)}(CNBu(t))] (9) upon reaction with 1 equiv. of Bu(t)NC. The heterodinuclear sigma-butadienyl complexes [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph=C(Ph)C(CO(2)Me)=(CO(2)Me)(o-C(6)H(4)CH(2)NMe(2))}] (11) and [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(Ph)=C(CO(2)Et)C(Ph)=C(CO(2)Et)(CH(2)C(9)H(6)N)}] (13) have been obtained by reaction of the metallate K[Fe{Si(OMe)(3)}(CO)(3)(dppm-P)] (dppm = Ph(2)PCH(2)PPh(2)) with [P[upper bond 1 start]dCl{C(Ph)=C(Ph)C(CO(2)Me)=C(CO(2)Me)(o-C(6)H(4)CH(2)N[upper bond 1 end]Me(2))}] or [P[upper bond 1 start]dCl{C(Ph)=C(CO(2)Et)C(Ph)=(CO(2)Et)}(CH(2)C(9)H(6)N[upper bond 1 end])], respectively. Monoinsertion of various organic isocyanides RNC into the Pd-C bond of 2 and 3 afforded the corresponding heterometallic iminoacyl complexes. In the case of complexes [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end][upper bond 1 start]d{C=(NR)(CH(2)C(9)H(6)N[upper bond 1 end])}] (15a R = Ph, 15b R = xylyl), a static six-membered C,N chelate is formed at the Pd centre, in contrast to the situation in [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=NR)(o-C(6)H(4)CH(2)NMe(2))}] (14a R = o-anisyl, 14b R = 2,6-xylyl) where formation of a mu-eta(2)-Si-O bridge is preferred over NMe(2) coordination. The outcome of the reaction of the dimetallic alkyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe] with RNC depends both on the stoichiometry and the electronic donor properties of the isocyanide employed for the migratory insertion process. In the case of o-anisylisocyanide, the iminoacyl complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{C(=N-o-anisyl)Me}] (16) results from the reaction in a 1 : 1 ratio. Addition of three equiv. of o-anisylisocyanide affords the tris(insertion) product [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}] (18). After addition of a fourth equivalent of o-anisylNC, exclusive formation of the isocyanide adduct [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]e(mu-dppm)P[upper bond 1 end]d{[C(=N-o-anisyl)](3)Me}(CN-o-anisyl)] (19) was spectroscopically evidenced. In the complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]d{[C(=N-o-C(6)H(4)COCH(2))](2)Me}] (20), the sigma-bound diazabutadienyl unit is part of a 12-membered organic macrocyle which results from bis(insertion) of 1,2-bis(2-isocyanophenoxy)ethane into the Pd-Me bond of the precursor complex [(OC)(3)F[upper bond 1 start]e{mu-Si(OMe)(2)([lower bond 1 start]OMe)}(mu-dppm)P[lower bond 1 end][upper bond 1 end]dMe]. In contrast, addition of two equivalents of tert-butylisocyanide to a solution of the latter afforded [(OC)(3){(MeO)(3)Si}F[upper bond 1 start]Fe(mu-dppm)P[upper bond 1 end]d{C(=NBu(t))Me}(CNBu(t))] (21) in which both a terminal and an inserted isocyanide ligand are coordinated to the Pd centre. In all cases, there was no evidence for competing CO substitution at the Fe(CO)(3) fragment by RNC. The molecular structures of the insertion products 8 x CH(2)Cl(2) and 16 x CH(2)Cl(2) have been determined by X-ray diffraction.  相似文献   

19.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

20.
A series of soluble trinuclear copper(I) and silver(I) complexes containing bicapped diynyl ligands, [M(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CR)(2)]PF(6) (M = Cu, R = Ph, C(6)H(4)-CH(3)-p, C(6)H(4)-OCH(3)-p, (n)C(6)H(13), H; M = Ag, R = Ph, C(6)H(4)-OCH(3)-p), has been synthesized and their electronic, photophysical, and electrochemical properties studied. The X-ray crystal structures of [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CPh)(2)]PF(6) and [Cu(3)(micro-dppm)(3)(micro(3)-eta(1)-C triple bond CC triple bond CH)(2)]PF(6) have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号