首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method for the determination of total selenium in wheat and wheat flour using graphite furnace atomic absorption spectrometry (GFAAS) with palladium/ascorbic acid as a chemical modifier was studied. The effects of nickel nitrate, palladium/ascorbic acid, and palladium/magnesium nitrate as chemical modifiers on the sensitivity in the determination of selenite, selenate and selenomethionine by GFAAS were compared. The palladium/ascorbic acid modifier was used for the determination of total selenium in wheat and wheat flour, because the oxidation states of the selenium ion are not important in the determination. The detection limit was estimated to be 1 microg L(-1) (calculated as 3sigma of the blank); the calibration curve was linear for the concentration range 5 - 50 microg L(-1) and the recovery range was 96.66 - 101.80%. The optimal ashing and atomizing temperatures were 1300 degrees C and 2250 degrees C, respectively. The proposed method was successfully applied to the determination of total selenium in wheat and wheat flour.  相似文献   

2.
A sensitive and simple method for the determination of trace amounts of indium in water samples by graphite furnace atomic absorption spectrometry (GFAAS) after coprecipitation with chitosan was investigated. Indium was quantitatively preconcentrated from water samples by coprecipitation with chitosan at pH 7.0-9.0. The coprecipitant was easily dissolved with acetic acid, and indium in the resulting solution was determined by GFAAS. The addition of lanthanum as a chemical modifier was more effective for the atomic absorbance of indium. The detection limit (S/N > or = 3) for indium was 0.04 microg dm(-3), and the relative standard deviations (n = 5) were 3.5-4.5% at 1.0 microg/100 cm3. The results obtained in this study indicate that the proposed method can be successfully applied to the determination of trace indium in water samples.  相似文献   

3.
Synthetic zeolites were dissolved in nitric acid, and the resulting solution used as a coprecipitant for the preconcentration of trace amounts of gallium in water samples prior to determination by electrothermal atomic absorption spectrometry (ETAAS). The gallium preconcentration conditions and the ETAAS measurement conditions were optimized. Gallium was quantitatively concentrated with the zeolites coprecipitate from pH 6.0 to 8.0. The coprecipitate was easily dissolved in nitric acid, and an aliquot of the resulting solution was introduced directly into a tungsten metal furnace. The atomic absorbance of gallium in the resulting solution was measured by ETAAS. An ashing temperature of 400 degrees C and an atomizing temperature of 2600 degrees C were selected. The calibration curve was linear up to 3.0 microg of gallium and passed through the origin. The detection limit (S/N > or = 3) for gallium was 0.08 microg/100 cm3. The relative standard deviation at 1.0 microg/100 cm3 was 3.0% (n = 5). The proposed method has been successfully applied to trace gallium analysis in environmental water samples.  相似文献   

4.
In this study, a syringe was filled with silica gel loaded with 3-aminopropyltriethoxysilane, for the separation and preconcentration of copper, cadmium and chromium prior to their determination by graphite furnace atomic absorption spectrometry (GFAAS) in seawater. For this purpose, a syringe was filled with 0.5 g of modified silica gel and the sample solution was drawn into the syringe and ejected back again. The analyte elements were quantitatively retained at pH 5. Then, the elements sorbed by the silica gel were eluted with 2.0 M of HCl and determined by GFAAS. At optimum conditions, the recovery of Cu, Cd and Cr were 96-98%. Detection limits (3delta) were 6.6, 7.5 and 6.0 micro g L(-1) for Cu, Cd and Cr, respectively. The elements could be concentrated by drawing and discharging several portions of sample successively but eluting only once. Cu, Cd and Cr added to a seawater sample were quantitatively recovered (>95%) in the range of the 95% confidence level. The method proposed in this paper was compared with a column technique. Optimum experimental conditions, reproducibility, precision and recoveries of both techniques are the same, but the syringe technique is much faster, easier and more practical than the column technique. It is a portable system and allows one to make the sorption process in the source of sample. In addition, the risk of contamination is less than in the column technique.  相似文献   

5.
Palladium was determined in pharmaceuticals by direct graphite furnace atomic absorption spectrometry (GFAAS) method. The detection limit was 0.1 μg/g in 5% solution; the recovery of 0.5–2.0 μg/g Pd spike was close to 100%. The flow injection GFAAS method was worked out using oxime and iminodiacetic acid ethyl cellulose (IDAEC) microcolumns for preconcentration of Pd in aqueous and 50% methanol solutions. The optimal pH range for preconcentration was 2–5. At 20-fold enrichment the detection limits for Pd were 0.39 μg/liter for oxime cellulose and 0.42 μg/liter for IDAEC.  相似文献   

6.
T Yang  XX Zhang  ML Chen  JH Wang 《The Analyst》2012,137(18):4193-4199
The potential of selective cell-sorption for separation/preconcentration of ultra-trace heavy metals was exploited by surface engineering of Saccharomyces cerevisiae cells. The general idea is to display the cadmium-binding peptide on the cell surface in order to enhance the covalent interaction between cadmium and the yeast cells. By immobilizing the surface-engineered yeast cells onto cytopore(?) microcarrier beads for cadmium adsorption, we demonstrated that with respect to the native yeast 600-fold and 25-1000-fold improvements were observed respectively for the tolerance of ionic strength and the tolerant capability toward various metal cations after surface engineering. Based on these observations, a novel procedure for selective cadmium preconcentration was developed with detection by graphite furnace atomic absorption spectrometry (GFAAS), employing the engineered S. cerevisiae cell-loaded cytopore(?) beads as a renewable sorption medium incorporated into a sequential injection lab-on-valve system. The cadmium retained on the yeast cell surface was eluted with a small amount of nitric acid and quantified with GFAAS. Within a range of 5-100 ng L(-1) and a sample volume of 1 mL, an enrichment factor of 30 was achieved along with a detection limit of 1.1 ng L(-1), a sampling frequency of 20 h(-1) and a precision of 3.3% RSD at 50 ng L(-1). The procedure was validated by analyzing cadmium in certified reference materials and a series of environmental water samples.  相似文献   

7.
Cloud point extraction (CPE) was applied as a preconcentration step prior to graphite furnace atomic absorption spectrometry (GFAAS) determination of manganese(II) and iron(III) in water samples. After complexation with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), the analytes could be quantitatively extracted to the phase rich in the surfactant p-octylpolyethyleneglycolphenylether (Triton X-100) and be concentrated, then determined by GFAAS. The parameters affecting the extraction efficiency, such as solution pH, concentration of PMBP and Triton X-100, equilibration temperature and time, were investigated in detail. Under the optimum conditions, preconcentration of 10 ml of sample solution permitted the detection of 0.02 ng ml(-1) of Mn(II) and 0.08 ng ml(-1) of Fe(III) with enrichment factors of 31 and 25 for Mn(II) and Fe(III), respectively. The proposed method was applied to determination of trace manganese(II) and iron(III) in water samples with satisfactory results.  相似文献   

8.
The formation of a complex with 2-(5-brom-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP) and cloud point extraction have been applied to the preconcentration of cadmium followed by its determination by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation were optimized. At pH 7.0, preconcentration of only 10 mL of sample in the presence of 0.05% TritonX-114 and 2.5 × 10−6 M 5-Br-PADAP enabled the detection of 0.04 μg/L cadmium. The enrichment factor was 21 for cadmium. The regression equation was A = 0.0439C(μg/L) + 7.2 × 10−3. The correlation coefficient was 0.9995. The precision for 10 replicate determinations at 10 μg/L Cd was 2.7% relative standard deviation (RSD). The proposed method has been applied to the determination of cadmium in water samples. The text was submitted by the authors in English.  相似文献   

9.
A procedure for the determination of trace amount of cadmium after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been proposed. This chelate is adsorbed on the adsorbent in the pH range 3-8 from large volumes of aqueous solution of water samples with a preconcentration factor of 200. After being sorbed, cadmium was eluted by 5 mL of 2.0 mol L(-1) nitric acid solution and determined directly by flame atomic absorption spectrophotometery (FAAS). The detection limit (3sigma) of cadmium was 0.32 microg L(-1). The precision of the proposed procedure, calculated as the relative standard deviation of recovery in sample solution (100 mL) containing 5 microg of cadmium was satisfactory (1.9%). The adsorption of cadmium onto adsorbent can formally be described by a Langmuir equation with a maximum adsorption capacity of 19.6 mg g(-1) and a binding constant of 6.5 x 10(-3) L mg(-1). Various parameters, such as the effect of pH and the interference of a number of metal ions on the determination of cadmium, have been studied in detail to optimize the conditions for the preconcentration and determination of cadmium in water samples. This procedure was applied to the determination of cadmium in tap and river water samples.  相似文献   

10.
A new, simple, fast and reliable solid-phase extraction method has been developed for separation/preconcentration of trace amounts of Pb(II) using dithizone/sodium dodecyl sulfate-immobilized on alumina-coated magnetite nanoparticles, and its determination by flame atomic absorption spectrometry (FAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after eluting with 4.0?mol?L?1 HNO3. Optimal experimental conditions including pH, sample volume, eluent concentration and volume, and co-existing ions have been studied and established. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation of Pb(II) using FAAS technique were 280 (for 560?mL of sample solution), 0.28?ng?mL?1, 1.4?C70?ng?mL?1 and 4.6% (for 10?ng?mL?1, n?=?10), respectively. These analytical parameters using GFAAS technique were 300 (for 600?mL of sample solution), 0.002?ng?mL?1, 0.006?C13.2?ng?mL?1 and 3.1% (for 5?ng?mL?1, n?=?10), respectively. The presented procedure was successfully applied for determination of Pb(II) content in opium, heroin, lipstick, plants and water samples.  相似文献   

11.
A procedure for separation and preconcentration of trace amounts of cadmium has been proposed. A column of analcime zeolite modified with benzyldimethyltetradecylammonium chloride and loaded with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) was used for retention of cadmium. The cadmium was quantitatively retained on the column at pH approximately 9 and was recovered from column with 5 ml of 2 M nitric acid with a preconcentration factor of 140. Anodic stripping differential pulse voltammetry was used for determination of cadmium. A 0.05 ng/ml detection limit for the preconcentration of aqueous solution of cadmium was obtained. The relative standard deviation (RSD) for eight replicate determinations at the 1 microg/ml cadmium levels was 0.31% (calculated with the peak height obtained). The calibration graph using the preconcentration system was linear from 0.01 to 150 microg/ml in final solution with a correlation coefficient of 0.9997. For optimization of conditions, various parameters such as the effect of pH, flow rate, instrumental conditions and interference of number of ions, were studied in detail. This method was successfully applied for determination of cadmium in various complex samples.  相似文献   

12.
A solid‐phase extraction (SPE) method has been presented for the selective separation and preconcentration of trace amounts of cadmium using cetyltrimethylammonium bromide (CTAB)‐coated Fe3O4 nanoparticles (NPs). The method is based on the sorption of cadmium as CdI42? complex on the positively charged surface of the CTAB‐coated Fe3O4 NPs. The preconcentrated cadmium is then desorbed from the surface of the sorbent and is determined by flame atomic absorption spectrometry. The influences of the experimental parameters including pH of the solutions, amount of surfactant, iodide concentration, sample volume, eluent type and volume on the recovery of the analyte ions were investigated. Under the optimum conditions by the extraction of 500 mL of aqueous samples, a preconcentration factor of 250 was achieved. The detection limit (3s) was 0.06 μg L?1, and the relative standard deviations at 0.5 and 5 μg L?1 levels of cadmium (n = 10) were 3.2 and 1.9% respectively. The proposed method was successfully applied to the determination of cadmium in water samples. The accuracy was evaluated through the recovery experiments and independent analysis by the graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

13.
Chan MS  Huang SD 《Talanta》2000,51(2):373-380
Methods for the direct determination of copper and cadmium in seawater were described using a graphite furnace atomic absorption spectrometer (GFAAS) equipped with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman effect background corrector. Ammonium nitrate was used as the chemical modifier to determine copper. The mixture of di-ammonium hydrogen phosphate and ammonium nitrate was used as the chemical modifier to determine cadmium. The matrix interference was removed completely so that a simple calibration curve method could be applied. This work is the first one with the capability of determining cadmium in unpolluted seawater directly with GFAAS using calibration curve based on simple aqueous standards. The accuracy of the methods was confirmed by analysis of three kinds of certified reference saline waters. The detection limits (LODs), with injection of a 20-mul aliquot of seawater sample, were 0.06 mug l(-1) for copper and 0.005 mug l(-1) for cadmium.  相似文献   

14.
A method based on cloud point extraction (CPE) separation/preconcentration of trace cadmium as a prior step to its determination by graphite furnace atomic absorption spectrometry (GFAAS) has been developed. If the system temperature is higher than the cloud point temperature (CPT) of the nonionic surfactant of p-octyl polyethyleneglycolphenyether (Triton X-100), the complex of Cd2+ with 1-(2-pyridylazo)-2-naphthol (PAN) could be extracted into surfactant-rich phase. The chemical variables affecting CPE were evaluated and optimized. Under the optimum conditions, preconcentrating 10.0 mL of water samples permitted a limit of detection of 5.9 ng · L−1 (3σ) for cadmium with an enhancement factor of 50 and a relative standard deviation of 2.1% (n = 11, c = 2.0 ng · mL−1). The method was applied to the determination of cadmium in reference material and water samples with satisfactory results.  相似文献   

15.
对石墨炉原子吸收光谱法测定虾粉中镉含量进行了不确定度评价。分析了整个测试过程中不确定度的来源,并对各不确定度分量进行了计算,当虾粉中镉的含量为0.389mg/kg时,扩展不确定度为0.008mg/kg(k=2)。  相似文献   

16.
Rojas FS  Ojeda CB  Pavón JM 《Talanta》2006,70(5):979-983
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples.  相似文献   

17.
采用石墨炉原子吸收法直接测定了香根草中重金属的含量,通过一系列实验,确定了石墨炉法测定Pb、Cd、Cu的最佳灰化温度和原子化温度,考察了精密度和回收率。结果表明,该法操作简单快捷,样品用量少,灵敏度高,稳定性好。  相似文献   

18.
The determination of bismuth and cadmium by graphite furnace atomic absorption spectrometry (GFAAS) after solid-phase extraction (SPE) on Chromosorb-107 filled in a syringe was described. To retain the analytes, the sample solution treated with and without ammonium pyrolidine dithiocarbamate (APDC) was drawn into the syringe filled with Chromosorb-107 and discharged back manually. Bismuth and cadmium were quantitatively sorbed at pH ≥ 6 irrespective of whether the analyte was complexed with APDC prior to passing through the Chromosorb-107. Analyte elements sorbed on the resin were quantitatively eluted with 3.0 M of HNO3 again drawing and discharging the eluent into the syringe and ejected it back. Optimum flow rates of sample or eluent for sorption and elution processes were 20 ml min−1 for drawing and 20 ml min−1 for discharging in all cases. Bismuth and cadmium were analyzed by graphite furnace atomic absorption spectrometry. The elements could be concentrated by drawing and discharging several portions of sample successively but eluting only one time. The validity of the proposed method was checked with standard reference materials (NIST SRM 1515 Apple-Leaves, CWW-TM-E Waste Water and CRM-SW Sea Water). The analyte elements were quantitatively (>95%) recovered from different matrices irrespective of treated samples with APDC. Detection limits (δ) were 0.8 and 1.2 μg l−1 for Bi and Cd, respectively. The method can be characterized with fastness, simplicity, quantitative recovery and high reproducibility.  相似文献   

19.
A new preconcentration method with yeast is presented. The method was evaluated for the determination of trace silver in river waters by graphite furnace atomic absorption spectrometry (GFAAS). A suitable cultivation bed for preconcentration of silver was 1.75 mg ml-1 2-ammonium hydrogen phosphate. The optimal cultivation time and temperature were 2 h and 25 degrees C. Under optimal conditions, silver in aqueous sample was concentrated to 6.9-fold by yeast. The detection limit was 4.6 pg ml-1 (3S/N) for silver in river water. The yeast preconcentration method was applied to the determination of silver in river waters. The recovery of spiked silver was in the range of 89 to 110%. By the preconcentration, it was found that ultra trace silver in river waters could be determined without interferences of matrix elements, after only the cultivation and with no chemical treatment.  相似文献   

20.
Atomic absorption spectrometric determinations of silver, bismuth and cadmium in the Canadian SU-1 and the Nordic ASK reference sulfide ores and in a series of Norwegian sulfide ores of technical importance, were carried out by atomizing the elements directly from the solid state. Atomizations were made in a high-frequency induction-heated graphite furnace. For comparison purposes, samples were also decomposed, and analyses made by atomizing sample solutions in the furnace and in the flame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号