首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
高温下硅酸锂吸收CO2的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
以SiO2和Li2CO3为反应原料,采用高温固相法于不同温度下合成了一系列可在高温500~750 ℃之间直接吸收CO2的硅酸锂(Li4SiO4)材料。采用扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)分别观察和评价了合成材料的表面形貌与结构特征,用热重分析仪(TG)研究了硅酸锂材料吸收CO2的性能。实验结果表明,在750 ℃下煅烧6 h即可合成出吸收CO2性能良好的硅酸锂材料,在CO2气氛下,于700 ℃保持约15 min即可达到吸收平衡,其吸收量约达43%(wt)左右。与文献报道相比,材料的合成条件有所改善,材料吸收CO2的容量也有较大提高。  相似文献   

3.
The kinetics describing the thermal decomposition of Li4SiO4 and Li2SiO3 have been analysed. While Li4SiO4 decomposed on Li2SiO3 by lithium sublimation, Li2SiO3 was highly stable at the temperatures studied. Li4SiO4 began to decompose between 900 and 1000 °C. However, at 1100 °C or higher temperatures, Li4SiO4 melted, and the kinetic data of its decomposition varied. The activation energy of both processes was estimated according to the Arrhenius kinetic theory. The energy values obtained were −408 and −250 kJ mol−1 for the solid and liquid phases, respectively. At the same time, the Li4SiO4 decomposition process was described mathematically as a function of a diffusion-controlled reaction into a spherical system. The activation energy for this process was estimated to be −331 kJ mol−1. On the other hand, Li2SiO3 was not decomposed at high temperatures, but it presented a very high preferential orientation after the heat treatments.  相似文献   

4.
Borohydrides have been recently hightlighted as prospective new materials due to their high gravimetric capacities for hydrogen storage. It is, therefore, important to under-stand the underlying dehydrogenation mechanisms for further development of these ma-terials. We present a systematic theoretical investigation on the dehydrogenation mecha-nisms of theMg2(BH4)2(NH2)2 compounds. We found that dehydrogenation takes place most likely via the intermolecular process, which is favorable both kinetically and thermo-dynamically in comparison with that of the intramolecular process. The dehydrogenation of Mg2(BH4)2(NH2)2 initially takes place via the direct combination of the hydridic H in BH4- and the protic H in NH2-, followed by the formation of Mg-H and subsequent ionic recombination of Mg-Hδ- …Hδ+N.  相似文献   

5.
采用不同硅源、锂源以湿磨法结合高温焙烧制备了纳米Li_4SiO_4材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征了合成材料的结构和表面形貌,利用热重分析仪(TG)研究了Li_4SiO_4材料高温下的CO_2吸收性能和循环使用稳定性。结果表明,湿磨法制备的Li_4SiO_4材料在550℃、2.5×104Pa下,10min可达吸收平衡,平衡吸收量为27.9%(质量分数),经五次吸收-解吸后仍保持初始吸收性能,显示了良好的循环稳定性。将25%CO_2-25%N2-50%He混合气通过Li_4SiO_4材料床层,发现在550℃下,CO_2能被高效捕集,在相对湿度为10%的水汽存在下,Li_4SiO_4捕集CO_2的性能没有明显下降。  相似文献   

6.
Phase relations in the system NiAl2O4Ni2SiO4 were studied in the pressure range 1.5 ~ 13.0 GPa and in the temperature range 800 ~ 1450°C. Two new phases, IV and V, were found in regions of pressure higher than 4 GPa. Phase V disproportionates into a mixture of Ni2SiO4-spinel, NiO, and Al2O3 at approximately 9.5 GPa and 1100°C. Phases III, IV, and V form a solid solution in some compositional range: phases IV and V have a composition around NiAl2O4·Ni2SiO4, whereas phase III spreads from NiAl2O4·Ni2SiO4 to the NiAl2O4-rich side. All the phases I ~ V are structurally considered to be spinel derivatives, “spinelloids,” with three kinds of tetrahedral groups; isolated tetrahedra TO4, linked ones T2O7, and triply linked ones T3O10. The ratios of isolated tetrahedra to linked ones are large in the higher-pressure phases and small in the lower-pressure phases. The difference of compositional range of phase III from that of phases IV and V is possibly explained by the avoidance of linked tetrahedra such as O3AlOAlO3.  相似文献   

7.
A new modification of Pb2SiO4 was formed by the simultaneous hydrolysis of lead and silicon alkoxides, followed by washing and drying. It has a  相似文献   

8.
Crystal structure and structural disorder of (Ba0.65Ca0.35)2SiO4 were investigated by laboratory X-ray powder diffraction (CuKα1). The initial structural model with eleven independent atoms in the unit cell was determined using direct methods, and it was further modified to a split-atom model, in which the two types of Ba/Ca atoms and two types of SiO4 tetrahedra were, respectively, positionally and orientationally disordered. The crystal structure is trigonal (space group , Z=4) with lattice dimensions a=0.57505(1) nm, c=1.46706(2) nm and V=0.42014(1) nm3. The validity of the structural model was verified by the three-dimensional electron density distribution, the structural bias of which was reduced as much as possible using the maximum-entropy methods-based pattern fitting (MPF). The final reliability indices calculated from the MPF were Rwp=9.56% (S=1.48), Rp=7.29%, RB=1.82% and RF=0.88%. This compound is most probably homeotypic to glaserite.  相似文献   

9.
Orthorhombic magnesium manganese silicate (Mg1.03Mn0.97SiO4) was prepared and evaluated as a new cathode material for rechargeable magnesium batteries. Although the electrochemical activity of the Mg1.03Mn0.97SiO4 synthesized by high-temperature solid-state reaction is low, the magnesium storage capacity of nanosized Mg1.03Mn0.97SiO4 prepared by modified sol–gel route and in situ carbon coating reaches 244 mAh g−1. The capacity increase mechanism during charge/discharge cycling was also preliminary studied.  相似文献   

10.
Phase equilibria in the Ba3(VO4)2-K2Ba(MoO4)2 and Pb3(VO4)2-K2Pb(MoO4)2 systems have been investigated. In the first system, a continuous series of substitutional solid solutions with the palmierite structure is formed, and in the second one, the polymorphic transition in lead orthovanadate at 100°C restricts the extent of the palmierite-type solid solution to 10–100 mol % K2Pb(MoO4)2. Original Russian Text ? V.D. Zhuravlev, Yu.A. Velikodnyi, A.S. Vinogradova-Zhabrova, A.P. Tyutyunnik, V.G. Zubkov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 10, pp. 1746–1748.  相似文献   

11.
以Li2CO3和SiO2为原料,通过高温固相合成法合成了CO2捕集剂Li4SiO4,并用X射线粉末衍射仪(XRD)、扫描电子显微镜(SEM)对所合成的材料在CO2捕集前后的晶相变化以及微观结构进行了表征。通过热重分析仪(TGA)研究了Li4SiO4材料吸附CO2的性能,并在小型热态实验台架上进行了CO2热态捕集实验。实验结果表明,Li4SiO4对CO2的捕集性能受Li4SiO4合成温度、CO2的吸附温度以及气体中CO2含量的影响,在700 ℃下制得的Li4SiO4具有最佳的CO2吸附特性,最大吸附增量可达34%。Li4SiO4的吸附能力随着CO2含量和吸附时间的增加而增加,当CO2浓度分别为75%、67%、60%时,700 ℃ Li4SiO4对CO2最大吸附量分别可达6.68 mmol/g、3.37 mmol/g、2.02 mmol/g (理论量8.33 mmol/g)。  相似文献   

12.
We first design and synthesize a MWNT/C/Mg1.03Mn0.97SiO4 hierarchical nanostructure composed of MWNTs pinning the surface of the Mg1.03Mn0.97SiO4 nanoparticles, with simultaneous tethering to Mg1.03Mn0.97SiO4 particles via an interfacial amorphous carbon phase bonding, through a facile CVD method. It is further demonstrated that the nanocomposite exhibits a reversible capacity as high as 300 mAh g−1 at 0.2 C and a stable cycling performance at 0.5 C when utilized as a cathode material for rechargeable magnesium batteries.  相似文献   

13.
以TiF3和Ti(OBu-n)4为催化剂, 研究了Ti离子掺杂对MgH2和Mg2NiH4放氢性能的影响. 结果表明, 未掺杂的MgH2起始放氢温度为420 ℃, 掺杂TiF3和Ti(OBu-n)4后分别降低到360和410 ℃; Mg2NiH4在掺杂TiF3后放氢温度由230 ℃降低到220 ℃, 而掺杂Ti(OBu-n)4后没有变化. 可见无论对MgH2或Mg2NiH4, 在降低放氢温度方面TiF3都明显优于Ti(OBu-n)4. 另外, 研究还发现, TiF3掺杂对MgH2放氢动力学有显著的提高, 但对Mg2NiH4没有明显的提高. 结合XRD和FTIR的测试分析, 我们认为: 催化作用很大程度上取决于氢化物自身的晶体结构和催化剂的电子结构; 降低氢化物放氢温度和提高动力学性能的原因是催化剂与氢化物之间的相互作用削弱了氢化物中Mg—H或Ni—H键, 使得活泼的H…H原子对容易形成, 从而有利于H2的释出.  相似文献   

14.
A three-dimensional (3D) cobalt phosphate: Co5(OH2)4(HPO4)2(PO4)2 (1), has been synthesized by hydrothermal reaction and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and magnetic techniques. The title compound is a template free cobalt phosphate. Compound 1 exhibits a complex net architecture based on edge- and corner-sharing of CoO6 and PO4 polyhedra. The magnetic susceptibility measurements indicated that the title compound obeys Curie-Weiss behavior down to a temperature of 17 K at which an antiferromagnetic phase transition occurs.  相似文献   

15.
Sb2O4 at high pressures and high temperatures   总被引:1,自引:0,他引:1  
Investigations on Sb2O4 at high pressure and temperature have been performed up to 600 °C and up to 27.3 GPa. The so-called “high temperature” phase (β-Sb2O4) was obtained following pressure increase at ambient temperature and at relatively low temperatures. Thus, in contrast to previous perceptions, β-Sb2O4 is the modification more stable at high pressures, i.e., at low temperatures. The fact that the metastable α-form is typically obtained through the conventional way of preparation has to be attributed to kinetic effects. The pressure-induced phase transitions have been monitored by in-situ X-ray diffraction in a diamond anvil cell, and confirmed ex-situ, by X-ray diffraction at ambient conditions, following temperature decrease and decompression in large volume devices. Bulk modulus values have been derived from the pressure-induced volume changes at room temperature, and are 143 GPa for α-Sb2O4 and 105 GPa for the β-Sb2O4.  相似文献   

16.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

17.
In the system Co2GeO4Mg2GeO4, solid solubilities in spinel and olivine structures were studied on samples prepared by solid state reaction at temperatures of 1000–1300°C. The solubility limits were determined from the identification by X-ray powder pattern and the change of the lattice constant of spinel with composition. The relation between temperature and the free energy difference ΔG° which was estimated from the solubility limits agreed qualitatively with the fact that the spinel phase of Mg2GeO4 is stable at low temperatures under atmospheric pressure. The spinels were also synthesized at 800°C under the pressure of 20 kb. Over the whole range of composition, the cation distribution was found to be normal with u = 0.375. Above 1000°C under 20 kb in the presence of water, the spinels, except Co2GeO4, were found to react with water to form enstatite and probably magnesium hydroxide in an amorphous state.  相似文献   

18.
The high-temperature behavior of Sr2Fe2O5 has been well characterized by various techniques (DTA, X-ray diffraction, magnetic measurements) paying particular attention to keep the nominal composition constant. The transition from the low-temperature ordered form (with brownmillerite structure) to the high-temperature disordered form (of perovskite structure) has been explained in terms of microdomain formation. A structural model is proposed and discussed.  相似文献   

19.
We present here the results of X-ray diffraction (XRD), dielectric and calorimetric studies on lead magnesium tungustate, Pb(Mg0.5W0.5)O3 (PMW) ceramic. It is shown that the low temperature antiferroelectric phase of PMW having orthorhombic structure (space group Pmcn) transforms to paraelectric cubic (space group Fm3m) phase at 281 K. The phase transition is of first order character as confirmed by coexistence of Pmcn and Fm3m phases over wide temperature range ∼50 K. The first order character of phase transition is also revealed by the observation of thermal hysteresis in the real part of dielectric permittivity and calorimetric studies. We do not find any evidence for the additional intermediate phase between antiferroelectric (Pmcn) and paraelectric (Fm3m) phases as reported in the literature. Anomalies in the heat flow and dielectric measurements support the finding of our XRD results and reveals that the phase transition temperature (Tc) is 281 K instead of 312 K reported in the literature.  相似文献   

20.
Phase diagrams of the systems K2SO4Sc2(SO4)3, Rb2SO 4Sc2(SO4)3 and Cs2SO4 Sc2(SO4)3 have been investigated by X-ray diffraction phase analysis and differential thermal analysis techniques. A salient feature of all the systems is the formation of M3Sc(SO4)3, which melt incongruently, and MSc(SO4)2, which on heating decompose in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号