首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
In the presence of surfactant, water-insoluble poly(D,L-lactide) (PLA) was dispersed into narrowly distributed nanoparticles stable in water via microphase inversion. The structure and degradation of such formed nanoparticles were investigated by a combination of static and dynamic laser light scattering. Our results revealed that the degradation rate increased with the temperature and pH so that the degradation could be regulated from minutes to days. Using anionic sodium dodecyl sulfate (SDS) as stabilizer resulted in a slower degradation than using cationic hexadecyltrimethylammonium bromide (HTAB). The phthalocyanine chromophores (PC) could be encapsulated inside these PLA nanoparticles. The degradation of individual PLA nanoparticles led to a controllable releasing of PC. The absorption and fluorescence studies revealed a correlation between the degradation and the releasing of PC. Our results showed that a higher PC/PLA ratio could lead to a faster degradation.  相似文献   

2.
Polymerization of L ‐lactide (LA) was performed in the presence of trifluoromethanesulfonic acid (CF3SO3H) via an activated monomer mechanism to synthesize various block copolymers composed of polyethyleneglycol (PEG) and poly(L ‐lactide) (PLLA). The PLLAs obtained had molecular weights close to theoretical values calculated from LA/PEG molar ratios and exhibited monomodal GPC curves. A 1H NMR spectroscopic study showed that the LA carbonyl carbon signal exhibited a change in chemical shift to lower field, caused by electron delocalization of the carbonyl carbon by CF3SO3H. We successfully prepared PEG and PLLA block copolymers using this activated monomer mechanism. We concluded that synthesis proceeded by LA ring‐opening polymerization caused by PEG in the presence of CF3SO3H to yield PEG and PLLA block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5917–5922, 2009  相似文献   

3.
Poly(D ,L -lactide)–poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone)–poly(D ,L -lactide) block copolymer (PLA–PCL–PEG–PCL–PLA) was prepared by copolymerization of ϵ-caprolactone (ϵ-CL) and D ,L -lactide (D ,L -LA) initiated by potassium poly(ethylene glycol)ate in THF at 25°C. The copolymers with different composition were synthesized by adjusting the mole ratio of reaction mixture. The resulted copolymers were characterized by 1H-NMR, 13C-NMR, IR, DSC, and GPC. Efforts to prepare copolymers with the corresponding structure of PCL–PLA–PEG–PLA–PCL and D ,L -lactide/ϵ-caprolactone random copolymers were not successful. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

5.
In this study, the polymerization of (2‐hydroxyethyl) acrylate (HEA), in polar media, using Cu(0)‐mediated radical polymerization also called single‐electron transfer–living radical polymerization (SET‐LRP) is reported. The kinetics aspects of both the homopolymerization and the copolymerization from a poly(ethylene oxide) (PEO) macroinitiator were analyzed by 1H NMR. The effects of both the ligand and the solvent were studied. The polymerization was shown to reach very high monomer conversions and to proceed in a well‐controlled fashion in the presence of tris[2‐(dimethylamino)ethyl]amine Me6‐TREN and N, N,N′, N″, N″‐pentamethyldiethylenetriamine (PMDETA) in dimethylsulfoxide (DMSO). SET‐LRP of HEA was also led in water, and it was shown to be faster than in DMSO. In pure water, Me6‐TREN allowed a better control over the molar masses and polydispersity indices than PMDETA and TREN. Double hydrophilic PEO‐b‐PHEA block copolymers, exhibiting various PHEA block lengths up to 100 HEA units, were synthesized, in the same manner, from a bromide‐terminated PEO macroinitiator. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
Microwave (MW)‐assisted ring‐opening polymerization (ROP) provides a rapid and straightforward method for engineering a wide array of well‐defined poly(3‐hydroxyalkanoate)‐b‐poly(D,L ‐lactide) (PHA‐b‐PLA) diblock copolymers. On MW irradiation, the bulk ROP of D,L ‐lactide (LA) could be efficiently triggered by a series of monohydroxylated PHA‐based macroinitiators previously produced via acid‐catalyzed methanolysis of corresponding native PHAs, thus affording diblock copolyesters with tunable compositions. The dependence of LA polymerization on temperature, macroinitiator structure, irradiation time, and [LA]0/[PHA]0 molar ratio was carefully investigated. It turned out that initiator efficiency values close to 1 associated with conversions ranging from 50 to 85% were obtained only after 5 min at 115 °C. A kinetic investigation of the MW‐assisted ROP of LA gave evidence of its “living”/controlled character under the experimental conditions selected. Structural analyses and thermal properties of biodegradable diblock copolyesters were also performed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

8.
Ultrafine fibers of a laboratory‐synthesized new biodegradable poly(p‐dioxanone‐co‐L ‐lactide)‐block‐poly(ethylene glycol) copolymer were electrospun from solution and collected as a nonwoven mat. The structure and morphology of the electrospun membrane were investigated by scanning electron microscopy, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and a mercury porosimeter. Solutions of the copolymer, ranging in the lactide fraction from 60 to 80 mol % in copolymer composition, were readily electrospun at room temperature from solutions up to 20 wt % in methylene chloride. We demonstrate the ability to control the fiber diameter of the copolymer as a function of solution concentration with dimethylformamide as a cosolvent. DSC and WAXD results showed the relatively poor crystallinity of the electrospun copolymer fiber. Electrospun copolymer membrane was applied for the hydrolytic degradation in phosphate buffer solution (pH = 7.5) at 37 °C. Preliminary results of the hydrolytic degradation demonstrated the degradation rate of the electrospun membrane was slower than that of the corresponding copolymers of cast film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1955–1964, 2003  相似文献   

9.
10.
2‐Phenoxyethyl acrylate (2‐PEA) was polymerized alone and in the presence of an azobenzene comonomer derived from Disperse Red‐1, N‐ethyl‐N‐(2‐hydroxyethyl)‐4‐(4‐nitrophenylazo)aniline (MDR‐1), by using the frontal polymerization technique. Two novel ionic liquids, recently synthesized by us, were used as initiators: tetrabutylphosphonium persulfate (TBPPS) and trihexyltetradecylphosphonium persulfate (TETDPPS). Even if their concentrations were smaller than those found when benzoyl peroxide and terbutylperoxy neodecanoate were used, these compounds gave rise to stable propagating polymerization fronts characterized by relatively low maximum temperatures and good velocities. Moreover, at variance to these latter, TBPPS and TETDPPS prevent bubble formation, thus allowing the use of the obtained materials in optical applications. The obtained polymers were characterized by infrared spectroscopy (FTIR), their thermal properties were determined by differential scanning calorimetry, and their optical properties were studied by absorption spectroscopy in the UV–vis region. Finally, the nonlinear optical (NLO) properties of the 2‐PEA/MDR‐1 copolymers obtained with TBPPS and TETDPPS were performed according to the Z‐Scan technique with prepared film samples. It has been proven that samples with higher MDR‐1 content (0.05 mol %) exhibited outstanding cubic NLO activity with negative NLO refractive coefficients around n2 = ?1.7 × 10?3 esu. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Poly(D,L‐lactide‐co‐glycolide) 50:50 (PLGA)/graphene oxide (GO) nanocomposite films were prepared with various GO weight fractions. A significant enhancement of mechanical properties of the PLGA/GO nanocomposite films was obtained with GO weight fractions. The incorporation of only 5 wt% of GO resulted in an ~2.5‐fold and ~4.7‐fold increase in the tensile strength and Young's modulus of PLGA, respectively. The thermomechanical behaviors of composite films were investigated by dynamic mechanical analysis. Results indicated that the values of Tg and storage moduli of the PLGA/GO composites were higher than those of the pristine PLGA. The improvement in oxygen barrier properties of composites was presumably attributed to the filler effect of the randomly dispersed GO throughout the PLGA matrix. In this work, we also studied in vitro biodegradation behavior. PLGA/GO composite films were hydrolyzed at 37°C for periods up to 49 days. Because of the presence of GO nanosheets, degradation of composite films took place more slowly with increasing GO amounts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Four generations of new amphiphilic thermoresponsive linear‐dendritic block copolymers (LDBCs) with a linear poly(N‐vinylcaprolactam) (PNVCL) block and a dendritic poly(benzyl ether) block are synthesized by atom transfer radical polymerization (ATRP) of N‐vinylcaprolactam (NVCL) using dendritic poly(benzyl ether) chlorides as initiators. The copolymers have been characterized by 1H NMR, FTIR, and GPC showing controlled molecular weight and narrow molecular weight distribution (PDI ≤ 1.25). Their self‐organization in aqueous media and thermoresponsive property are highly dependent on the generation of dendritic poly(benzyl ether) block. It is observed for the LDBCs that the self‐assembled morphology changes from irregularly spherical micelles, vesicles, rod‐like large compound vesicles (LCVs), to the coexistence of spherical micelles and rod‐like LCVs, as the generation of the dendritic poly(benzyl ether) increases. The results of a cytotoxicity study using an MTT assay method with L929 cells show that the LDBCs are biocompatible. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 300–308  相似文献   

13.
Novel AB2‐type amphiphilic block copolymers of poly(ethylene glycol) and poly(N‐isopropylacrylamide), PEG‐b‐(PNIPAM)2, were successfully synthesized through single‐electron transfer living radical polymerization (SET‐LRP). A difunctional macroinitiator was prepared by esterification of 2,2‐dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the SET‐LRP of N‐isopropylacrylamide (NIPAM) with CuCl/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalytic system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography and 1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI < 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry. As a result, the phase transition temperature of PEG44b‐(PNIPAM55)2 is similar to that in the case of PEG44b‐PNIPAM110; however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular architecture on the phase transition. This is the first study into the effect of macromolecular architecture on the phase transition using AB2‐type amphiphilic block copolymer composed of PEG and PNIPAM. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4420–4427, 2009  相似文献   

14.
In this preliminary work we have prepared a fluorinated polymer capable of solubilizing an appreciable amount of O(2) and, at the same time, maintaining a higher water solubility than perfluoroalkanes investigated as injectable O(2) carriers. In particular, we describe the synthesis and characterization of a new macromolecular conjugate obtained by derivatization of alpha,beta-poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) with 5-pentafluorophenyl-3-perfluoroheptyl-1,2,4-oxadiazole, called PHEA-F. This new water soluble fluoropolymer was prepared in high yield using a simple procedure. It was characterized by FT-IR and UV-vis spectrophotometry, (19)F-NMR and SEC measurements. O(2) solubility studies on PHEA-F aqueous solutions were carried out at 25 degrees C and 37 degrees C at atmospheric pressure and showed that PHEA-F conjugate, despite its low degree of derivatization in fluorine containing groups (2.60 mol-%), is capable of dissolving 13-15% more O(2) than non-fluorinated PHEA. Moreover, O(2) release in simulated physiological conditions is faster for PHEA-F than for PHEA. The biocompatibility of this conjugate has been evaluated by performing an in vitro viability assay on human chronic myelogenous leukaemia cells (K-562) chosen as a model cell line and in vitro haemolysis experiments on human RBCs. All these properties suggest the potential use of PHEA-F as an artificial O(2) carrier.  相似文献   

15.
Limitations of PEG in drug delivery have been reported from clinical trials. PEtOx (0.4–40 kDa) as alternative is synthesized by a living, microwave‐assisted polymerization, and is directly compared to PEG of similar molar mass regarding cytotoxicity and hemocompatibility. In short‐term treatments, both types of polymers are well tolerated even at high concentrations. Moderate concentration and molar mass dependent cytotoxic effects occurred only after long‐term incubation at concentrations higher than therapeutic doses. PEtOx possesses not only an easy route of synthesis and beneficial physicochemical characteristics such as low viscosity and high stability, which are advantageous over PEG, but additionally in vitro toxicology comparable to PEG.

  相似文献   


16.
2,4-dinitrophenol (2,4-DNP), which is a nitrophenol compound, is a carcinogenic and non-biodegradable pollutant, which is found at high concentrations in industrial wastewater. Degradation of 2,4-DNP using a three-dimensional sono-electrochemical (3D/SEC) process equipped with G/β-PbO2 anode and Fe/SBA-15 nanocomposite particle electrodes was evaluated in the present study. Investigating the effect of parameters including pH, electrolysis time, current density, and 2,4-DNP concentration on the performance of the 3D/SEC-Fe-SBA-15 process in 2,4-DNP degradation was considered, and optimization of these parameters was done using the Taguchi design technique. Field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy mapping (EDX-mapping), transmission electron microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR)) were the analyses techniques used to support the successful synthesis of Fe-SBA-15 and G/β-PbO2 anode. The optimum values obtained for pH, electrolysis time, current density, and 2,4-DNP concentration were 5.0, 60.0 min, 5.0 mA/cm2, and 50.0 mg/L, respectively. The experimental removal efficiencies of 2,4-DNP, COD, and TOC using 3D/SEC-Fe-SBA-15 process, under the mentioned conditions, were obtained to be 96.3%, 88.28%, and 83.82%, respectively. In addition, the AOS value was developed from ?0.29 to + 0.88; this indicates the high mineralization of 2,4-DNP and improvement of the solution biodegradability. Detecting the intermediates produced during the degradation process was done by LC-MS analysis, and pathways for its degradation was proposed. Results were indicative of the high potential of the 3D/SEC-Fe-SBA-15 process for treating wastewater containing phenolic compounds, e.g., 2,4-DNP, and can provide acceptable efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号