首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of physical systems depends on the existence of a state of least energy. In gravity, this is guaranteed by the positive energy theorem. For topological reasons, this fails for nonsupersymmetric Kaluza-Klein compactifications, which can decay to arbitrarily negative energy. For related reasons, this also fails for the anti-de Sitter (AdS) soliton, a globally static, asymptotically toroidal Lambda<0 spacetime with negative mass. Nonetheless, arguing from the AdS conformal field theory (AdS/CFT) correspondence, Horowitz and Myers proposed a new positive energy conjecture, which asserts that the AdS soliton is the unique state of least energy in its asymptotic class. We give a new structure theorem for static Lambda<0 spacetimes and use it to prove uniqueness of the AdS soliton. Our results offer significant support for the new positive energy conjecture and add to the body of rigorous results inspired by the AdS/CFT correspondence.  相似文献   

2.
We prove two theorems, announced in [6], for static spacetimes that solve Einstein's equation with negative cosmological constant. The first is a general structure theorem for spacetimes obeying a certain convexity condition near infinity, analogous to the structure theorems of Cheeger and Gromoll for manifolds of non-negative Ricci curvature. For spacetimes with Ricci-flat conformal boundary, the convexity condition is associated with negative mass. The second theorem is a uniqueness theorem for the negative mass AdS soliton spacetime. This result lends support to the new positive mass conjecture due to Horowitz and Myers which states that the unique lowest mass solution which asymptotes to the AdS soliton is the soliton itself. This conjecture was motivated by a nonsupersymmetric version of the AdS/CFT correspondence. Our results add to the growing body of rigorous mathematical results inspired by the AdS/CFT correspondence conjecture. Our techniques exploit a special geometric feature which the universal cover of the soliton spacetime shares with familiar ``ground state' spacetimes such as Minkowski spacetime, namely, the presence of a null line, or complete achronal null geodesic, and the totally geodesic null hypersurface that it determines. En route, we provide an analysis of the boundary data at conformal infinity for the Lorentzian signature static Einstein equations, in the spirit of the Fefferman-Graham analysis for the Riemannian signature case. This leads us to generalize to arbitrary dimension a mass definition for static asymptotically AdS spacetimes given by Chruciel and Simon. We prove equivalence of this mass definition with those of Ashtekar-Magnon and Hawking-Horowitz.  相似文献   

3.
We study the proposal that a de Sitter (dS) universe with an Anti-de Sitter (AdS) bubble can be replaced by a dS universe with a boundary CFT. To explore this duality, we consider incident gravitons coming from the dS universe through the bubble wall into the AdS bubble in the original picture. In the dual picture, this process has to be identified with the absorption of gravitons by CFT matter. We have obtained a general formula for the absorption probability in general d+1 spacetime dimensions. The result shows the different behavior depending on whether spacetime dimensions are even or odd. We find that the absorption process of gravitons from the dS universe by CFT matter is controlled by localized gravitons (massive bound state modes in the Kaluza-Klein decomposition) in the dS universe. The absorption probability is determined by the effective degrees of freedom of the CFT matter and the effective gravitational coupling constant which encodes information of localized gravitons. We speculate that the dual of (d+1)-dimensional dS universe with an AdS bubble is also dual to a d-dimensional dS universe with CFT matter.  相似文献   

4.
5.
By implementing a genetic algorithm we search for stable vacua in Type IIB non-geometric flux compactification on an isotropic torus with orientifold 3-planes. We find that the number of stable dS and AdS vacua are of the same order. Moreover we find that in all dS vacua the multi-field slow-roll inflationary conditions are fulfilled. Specifically we observe that inflation is driven by the axio-dilaton and the Kähler moduli. We also comment on the existence of one stable dS vacuum in the presence of exotic orientifolds.  相似文献   

6.
We review the relation between AdS spacetime in 1 $+$ 2 dimensions and the BTZ black hole (BTZbh). Later we show that a ground state in AdS spacetime becomes a thermal state in the BTZbh. We show that this is true in the bulk and in the boundary of AdS spacetime. The existence of this thermal state is tantamount to say that the Unruh effect exists in AdS spacetime and becomes the Hawking effect for an eternal BTZbh. In order to make this we use the correspondence introduced in algebraic holography between algebras of quasi-local observables associated to wedges and double cones regions in the bulk of AdS spacetime and its conformal boundary respectively. Also we give the real scalar quantum field as a concrete heuristic realization of this formalism.  相似文献   

7.
The problem of perturbative breakdown of conformal symmetry can be avoided, if a conformally covariant quantum field j{\varphi} on d-dimensional Minkowski spacetime is viewed as the boundary limit of a quantum field f{\phi} on d + 1-dimensional Anti-deSitter spacetime (AdS). We study the boundary limit in renormalized perturbation theory with polynomial interactions in AdS, and point out the differences as compared to renormalization directly on the boundary. In particular, provided the limit exists, there is no conformal anomaly. We compute explicitly the one-loop “fish diagram” on AdS4 by differential renormalization, and calculate the anomalous dimension of the composite boundary field j2{\varphi^2} with bulk interaction kf4{\kappa \phi^4}.  相似文献   

8.
The time evolution of strongly excited SU(2) Bogomol'nyi-Prasad-Sommerfield magnetic monopoles in Minkowski spacetime is investigated by using numerical simulations based on the technique of conformal compactification and on the use of the hyperboloidal initial value problem. It is found that an initially static monopole does not radiate the entire energy of the exciting pulse toward future null infinity. Rather, a long-lasting quasistable "breathing state" develops in the central region and certain expanding shell structures-built up by very high frequency oscillations-are formed in the far away region.  相似文献   

9.
The AdS/Ricci-flat (AdS/RF) correspondence is a map between families of asymptotically locally AdS solutions on a torus and families of asymptotically flat spacetimes on a sphere. The aim of this work is to perturbatively extend this map to general AdS and asymptotically flat solutions. A prime application for such map would be the development of holography for Minkowski spacetime. In this paper we perform a Kaluza–Klein (KK) reduction of AdS on a torus and of Minkowski on a sphere, keeping all massive KK modes. Such computation is interesting on its own, as there are relatively few examples of such explicit KK reductions in the literature. We perform both KK reductions in parallel to illustrate their similarity. In particular, we show how to construct gauge invariant variables, find the field equations they satisfy, and construct a corresponding effective action. We further diagonalize all equations and find their general solution in closed form. Surprisingly, in the limit of large dimension of the compact manifolds (torus and sphere), the AdS/RF correspondence maps individual KK modes from one side to the other. In a sequel of this paper we will discuss how the AdS/RF maps acts on general linear perturbations.  相似文献   

10.
For (n+1)-dimensional asymptotically anti-de Sitter (AdS) spacetimes which have holographic duals on their n-dimensional conformal boundaries, we show that the imposition of causality on the boundary theory is sufficient to prove positivity of mass for the spacetime when n> or =3, without the assumption of any local energy condition. We make crucial use of a time-delay formula relating the Ashtekar-Magnon mass of the spacetime to the time delay of a bulk null curve relative to that of a boundary null geodesic. We also discuss holographic causality for the negative mass AdS soliton and its implications for the positive energy conjecture of Horowitz and Myers.  相似文献   

11.
We present several results about the nonexistence of solutions of Einstein's equations with homothetic or conformal symmetry. We show that the only spatially compact, globally hyperbolic spacetimes admitting a hypersurface of constant mean extrinsic curvature, and also admitting an infinitesimal proper homothetic symmetry, are everywhere locally flat; this assumes that the matter fields either obey certain energy conditions, or are the Yang-Mills or massless Klein-Gordon fields. We find that the only vacuum solutions admitting an infinitesimal proper conformal symmetry are everywhere locally flat spacetimes and certain plane wave solutions. We show that if the dominant energy condition is assumed, then Minkowski spacetime is the only asymptotically flat solution which has an infinitesimal conformal symmetry that is asymptotic to a dilation. In other words, with the exceptions cited, homothetic or conformal Killing fields are in fact Killing in spatially compact or asymptotically flat spactimes. In the conformal procedure for solving the initial value problem, we show that data with infinitesimal conformal symmetry evolves to a spacetime with full isometry.  相似文献   

12.
Using conformal coordinates associated with conformal relativity—associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime—we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Pöschl-Teller potential, here we deduce and analytically solve a conformal ‘radial’ d’Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this ‘radial’ equation can be identified with a Schrödinger-like equation in which the potential is exactly the second Pöschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.  相似文献   

13.
The group of conformal diffeomorphisms and the group of causal automorphisms on two-dimensional globally hyperbolic spacetimes are clarified. It is shown that if two-dimensional spacetimes have non-compact Cauchy surfaces, then the groups are subgroups of that of two-dimensional Minkowski spacetime, and if two-dimensional spacetimes have compact Cauchy surfaces, then the groups are subgroups of that of two-dimensional Einstein’s static universe. Also, the groups of such spacetimes are explicitly calculated by use of universal covering spaces.  相似文献   

14.
We study the effects of the Born–Infeld electrodynamics on the holographic superconductors in the background of a Schwarzschild–AdS black hole spacetime. We find that the presence of Born–Infeld scale parameter decreases the critical temperature and the ratio of the gap frequency in conductivity to the critical temperature for the condensates. Our results mean that it is harder for the scalar condensation to form in the Born–Infeld electrodynamics.  相似文献   

15.
We discuss black hole solutions of Einstein-Λ gravity in the presence of nonlinear electrodynamics in d S spacetime. Considering the correlation of the thermodynamic quantities respectively corresponding to the black hole horizon and cosmological horizon of dS spacetime and taking the region between the two horizons as a thermodynamic system, we derive effective thermodynamic quantities of the system according to the first law of thermodynamics, and investigate the thermodynamic properties of the system under the influence of nonlinearity parameter α. It is shown that nonlinearity parameter α influences the position of the black hole horizon and the critical state of the system, and along with electric charge has an effect on the phase structure of the system,which is obvious, especially as the effective temperature is below the critical temperature. The critical phase transition is proved to be second-order equilibrium phase transition by using the Gibbs free energy criterion and Ehrenfest equations.  相似文献   

16.
17.
18.
《Physics letters. [Part B]》1988,215(4):711-717
The problem of the behaviour of geodesics in minisuperspace of multidimensional cosmology is discussed. We show that the compactification mechanism is globally stable if it leads to a Minkowski static microspace configuration.  相似文献   

19.
We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.  相似文献   

20.
A classical result in Lorentzian geometry states that a strongly causal spacetime is globally hyperbolic if and only if the Lorentzian distance is finite valued for every metric choice in the conformal class. It is proved here that a non-total imprisoning spacetime is globally hyperbolic if and only if for every metric choice in the conformal class the Lorentzian distance is continuous. Moreover, it is proved that a non-total imprisoning spacetime is causally simple if and only if for every metric choice in the conformal class the Lorentzian distance is continuous wherever it vanishes. Finally, a strongly causal spacetime is causally continuous if and only if there is at least one metric in the conformal class such that the Lorentzian distance is continuous wherever it vanishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号