首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New multi-dimensional Wiener amalgam spaces \(W_c(L_p,\ell _\infty )(\mathbb{R }^d)\) are introduced by taking the usual one-dimensional spaces coordinatewise in each dimension. The strong Hardy-Littlewood maximal function is investigated on these spaces. The pointwise convergence in Pringsheim’s sense of the \(\theta \) -summability of multi-dimensional Fourier transforms is studied. It is proved that if the Fourier transform of \(\theta \) is in a suitable Herz space, then the \(\theta \) -means \(\sigma _T^\theta f\) converge to \(f\) a.e. for all \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) . Note that \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset W_c(L_r,\ell _\infty )(\mathbb{R }^d) \supset L_r(\mathbb{R }^d)\) and \(W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d) \supset L_1(\log L)^{d-1}(\mathbb{R }^d)\) , where \(1 . Moreover, \(\sigma _T^\theta f(x)\) converges to \(f(x)\) at each Lebesgue point of \(f\in W_c(L_1(\log L)^{d-1},\ell _\infty )(\mathbb{R }^d)\) .  相似文献   

2.
Let \(A = -\mathrm{div} \,a(\cdot ) \nabla \) be a second order divergence form elliptic operator on \({\mathbb R}^n\) with bounded measurable real-valued coefficients and let \(W\) be a cylindrical Brownian motion in a Hilbert space \(H\) . Our main result implies that the stochastic convolution process $$\begin{aligned} u(t) = \int _0^t e^{-(t-s)A}g(s)\,dW(s), \quad t\geqslant 0, \end{aligned}$$ satisfies, for all \(1\leqslant p<\infty \) , a conical maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)}^p \leqslant C_p^p {\mathbb E}\Vert g \Vert _{ T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)}^p. \end{aligned}$$ Here, \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n)\) and \(T_2^{p,2}({\mathbb R}_+\times {\mathbb R}^n;H)\) are the parabolic tent spaces of real-valued and \(H\) -valued functions, respectively. This contrasts with Krylov’s maximal \(L^p\) -regularity estimate $$\begin{aligned} {\mathbb E}\Vert \nabla u \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;{\mathbb R}^n))}^p \leqslant C^p {\mathbb E}\Vert g \Vert _{L^p({\mathbb R}_+;L^2({\mathbb R}^n;H))}^p \end{aligned}$$ which is known to hold only for \(2\leqslant p<\infty \) , even when \(A = -\Delta \) and \(H = {\mathbb R}\) . The proof is based on an \(L^2\) -estimate and extrapolation arguments which use the fact that \(A\) satisfies suitable off-diagonal bounds. Our results are applied to obtain conical stochastic maximal \(L^p\) -regularity for a class of nonlinear SPDEs with rough initial data.  相似文献   

3.
We obtain a representation for set-valued risk measures which are defined on the completed \(l\) -tensor product \(E\widetilde{\otimes }_l G\) of Banach lattices \(E\) and \(G\) . This representation extends known representations for set-valued risk measures defined on Bochner spaces \(L^p(\mathbb {P}, \mathbb {R}^d)\) of \(p\) -integrable functions with values in \(\mathbb {R}^d\) .  相似文献   

4.
Let \(\Delta _0\) be the Laplace–Beltrami operator on the unit sphere \(\mathbb {S}^{d-1}\) of \({\mathbb R}^d\) . We show that the Hardy–Rellich inequality of the form $$\begin{aligned} \mathop \int \limits _{\mathbb {S}^{d-1}} \left| f (x)\right| ^2 \mathrm{d}{\sigma }(x) \le c_d \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) \left| (-\Delta _0)^{\frac{1}{2}}f(x) \right| ^2 \mathrm{d}{\sigma }(x) \end{aligned}$$ holds for \(d =2\) and \(d \ge 4\) but does not hold for \(d=3\) with any finite constant, and the optimal constant for the inequality is \(c_d = 8/(d-3)^2\) for \(d =2, 4, 5,\) and, under additional restrictions on the function space, for \(d\ge 6\) . This inequality yields an uncertainty principle of the form $$\begin{aligned} \min _{e\in \mathbb {S}^{d-1}} \mathop \int \limits _{\mathbb {S}^{d-1}} (1- {\langle }x, e {\rangle }) |f(x)|^2 \mathrm{d}{\sigma }(x) \mathop \int \limits _{\mathbb {S}^{d-1}}\left| \nabla _0 f(x)\right| ^2 \mathrm{d}{\sigma }(x) \ge c'_d \end{aligned}$$ on the sphere for functions with zero mean and unit norm, which can be used to establish another uncertainty principle without zero mean assumption, both of which appear to be new.  相似文献   

5.
Let $d$ be a given positive integer and let $\{R_j\}_{j=1}^d$ denote the collection of Riesz transforms on $\mathbb {R}^d$ . For $1<p<\infty $ , we determine the best constant $C_p$ such that the following holds. For any locally integrable function $f$ on $\mathbb {R}^d$ and any $j\in \{1,\,2,\,\ldots ,\,d\}$ , $$\begin{aligned} ||(R_jf)_+||_{L^{p,\infty }(\mathbb {R}^d)}\le C_p||f||_{L^{p,\infty }(\mathbb {R}^d)}. \end{aligned}$$ A related statement for Riesz transforms on spheres is also established. The proofs exploit Gundy–Varopoulos representation of Riesz transforms and appropriate inequality for orthogonal martingales.  相似文献   

6.
In this paper the author considers the problem of how large the Hausdorff dimension of \(E\subset \mathbb {R}^d\) needs to be in order to ensure that the radii set of \((d-1)\) -dimensional spheres determined by \(E\) has positive Lebesgue measure. The author also studies the question of how often can a neighborhood of a given radius repeat. There are two results obtained in this paper. First, by applying a general mechanism developed in Grafakos et al. (2013) for studying Falconer-type problems, the author proves that a neighborhood of a given radius cannot repeat more often than the statistical bound if \(\dim _{{\mathcal H}}(E)>d-1+\frac{1}{d}\) ; In \(\mathbb {R}^2\) , the dimensional threshold is sharp. Second, by proving an intersection theorem, the author proves that for a.e \(a\in \mathbb {R}^d\) , the radii set of \((d-1)\) -spheres with center \(a\) determined by \(E\) must have positive Lebesgue measure if \(\dim _{{\mathcal H}}(E)>d-1\) , which is a sharp bound for this problem.  相似文献   

7.
Consider a random matrix \(H:{\mathbb {R}}^{n}\longrightarrow {\mathbb {R}}^{m}\) . Let \(D\ge 2\) and let \(\{W_l\}_{l=1}^{p}\) be a set of \(k\) -dimensional affine subspaces of \({\mathbb {R}}^{n}\) . We ask what is the probability that for all \(1\le l\le p\) and \(x,y\in W_l\) , $$\begin{aligned} \Vert x-y\Vert _2\le \Vert Hx-Hy\Vert _2\le D\Vert x-y\Vert _2. \end{aligned}$$ We show that for \(m=O\big (k+\frac{\ln {p}}{\ln {D}}\big )\) and a variety of different classes of random matrices \(H\) , which include the class of Gaussian matrices, existence is assured and the probability is very high. The estimate on \(m\) is tight in terms of \(k,p,D\) .  相似文献   

8.
9.
In this paper we consider functions \(f\) defined on an open set \(U\) of the Euclidean space \(\mathbb{R }^{n+1}\) and with values in the Clifford Algebra \(\mathbb{R }_n\) . Slice monogenic functions \(f: U \subseteq \mathbb{R }^{n+1} \rightarrow \mathbb{R }_n\) belong to the kernel of the global differential operator with non constant coefficients given by \( \mathcal{G }=|{\underline{x}}|^2\frac{\partial }{\partial x_0} \ + \ {\underline{x}} \ \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}. \) Since the operator \(\mathcal{G }\) is not elliptic and there is a degeneracy in \( {\underline{x}}=0\) , its kernel contains also less smooth functions that have to be interpreted as distributions. We study the distributional solutions of the differential equation \(\mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) and some of its variations. In particular, we focus our attention on the solutions of the differential equation \( ({\underline{x}}\frac{\partial }{\partial x_0} \ - E)F(x_0,{\underline{x}})=G(x_0,{\underline{x}}), \) where \(E= \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}\) is the Euler operator, from which we deduce properties of the solutions of the equation \( \mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) .  相似文献   

10.
Let \(R\) be a finite chain ring with \(|R|=q^m\) , \(R/{{\mathrm{Rad}}}R\cong \mathbb {F}_q\) , and let \(\Omega ={{\mathrm{PHG}}}({}_RR^n)\) . Let \(\tau =(\tau _1,\ldots ,\tau _n)\) be an integer sequence satisfying \(m=\tau _1\ge \tau _2\ge \cdots \ge \tau _n\ge 0\) . We consider the incidence matrix of all shape \(\varvec{m}^s=(\underbrace{m,\ldots ,m}_s)\) versus all shape \(\tau \) subspaces of \(\Omega \) with \(\varvec{m}^s\preceq \tau \preceq \varvec{m}^{n-s}\) . We prove that the rank of \(M_{\varvec{m}^s,\tau }(\Omega )\) over \(\mathbb {Q}\) is equal to the number of shape \(\varvec{m}^s\) subspaces. This is a partial analog of Kantor’s result about the rank of the incidence matrix of all \(s\) dimensional versus all \(t\) dimensional subspaces of \({{\mathrm{PG}}}(n,q)\) . We construct an example for shapes \(\sigma \) and \(\tau \) for which the rank of \(M_{\sigma ,\tau }(\Omega )\) is not maximal.  相似文献   

11.
For a measure preserving transformation \(T\) of a probability space \((X,\mathcal{F },\mu )\) and some \(d \ge 1\) we investigate almost sure and distributional convergence of random variables of the form $$\begin{aligned} x \rightarrow \frac{1}{C_n} \sum _{0\le i_1,\ldots ,\,i_d where \(C_1, C_2,\ldots \) are normalizing constants and the kernel \(f\) belongs to an appropriate subspace in some \(L_p(X^d\!,\, \mathcal{F }^{\otimes d}\!,\,\mu ^d)\) . We establish a form of the individual ergodic theorem for such sequences. Using a filtration compatible with \(T\) and the martingale approximation, we prove a central limit theorem in the non-degenerate case; for a class of canonical (totally degenerate) kernels and \(d=2\) , we also show that the convergence holds in distribution towards a quadratic form \(\sum _{m=1}^{\infty } \lambda _m\eta ^2_m\) in independent standard Gaussian variables \(\eta _1, \eta _2, \ldots \) .  相似文献   

12.
13.
In this paper, we study the abundance of self-avoiding paths of a given length on a supercritical percolation cluster on \(\mathbb{Z }^d\) . More precisely, we count \(Z_N\) , the number of self-avoiding paths of length \(N\) on the infinite cluster starting from the origin (which we condition to be in the cluster). We are interested in estimating the upper growth rate of \(Z_N\) , \(\limsup _{N\rightarrow \infty } Z_N^{1/N}\) , which we call the connective constant of the dilute lattice. After proving that this connective constant is a.s. non-random, we focus on the two-dimensional case and show that for every percolation parameter \(p\in (1/2,1)\) , almost surely, \(Z_N\) grows exponentially slower than its expected value. In other words, we prove that \(\limsup _{N\rightarrow \infty } (Z_N)^{1/N}{<}\lim _{N\rightarrow \infty } \mathbb{E }[Z_N]^{1/N}\) , where the expectation is taken with respect to the percolation process. This result can be considered as a first mathematical attempt to understand the influence of disorder for self-avoiding walks on a (quenched) dilute lattice. Our method, which combines change of measure and coarse graining arguments, does not rely on the specifics of percolation on \(\mathbb{Z }^2\) , so our result can be extended to a large family of two-dimensional models including general self-avoiding walks in a random environment.  相似文献   

14.
Regular Gabor frames for \({\boldsymbol {L}{^{2}}(\mathbb {R}^d)}\) are obtained by applying time-frequency shifts from a lattice in \(\boldsymbol {\Lambda } \vartriangleleft {\mathbb {R}^{d} \times \mathbb {\widehat {R}}}\) to some decent so-called Gabor atom g, which typically is something like a summability kernel in classical analysis, or a Schwartz function, or more generally some \(g \in {\boldsymbol {S}_{0}(\mathbb {R}^{d})}\) . There is always a canonical dual frame, generated by the dual Gabor atom \({\widetilde g}\) . The paper promotes a numerical approach for the efficient calculation of good approximations to the dual Gabor atom for general lattices, including the non-separable ones (different from \({a\mathbb {Z}^{d}\,{\times }\,b\mathbb {Z}^{d}}\) ). The theoretical foundation for the approach is the well-known Wexler-Raz biorthogonality relation and the more recent theory of localized frames. The combination of these principles guarantees that the dual Gabor atom can be approximated by a linear combination of a few time-frequency shifted atoms from the adjoint lattice \(\boldsymbol {\Lambda }\circ\) . The effectiveness of this approach is justified by a new theoretical argument and demonstrated by numerical examples.  相似文献   

15.
‘There exist normal \((2m,2,2m,m)\) relative difference sets and thus Hadamard groups of order \(4m\) for all \(m\) of the form $$\begin{aligned} m= x2^{a+t+u+w+\delta -\epsilon +1}6^b 9^c 10^d 22^e 26^f \prod _{i=1}^s p_i^{4a_i} \prod _{i=1}^t q_i^2 \prod _{i=1}^u \left( (r_i+1)/2)r_i^{v_i}\right) \prod _{i=1}^w s_i \end{aligned}$$ under the following conditions: \(a,b,c,d,e,f,s,t,u,w\) are nonnegative integers, \(a_1,\ldots ,a_r\) and \(v_1,\ldots ,v_u\) are positive integers, \(p_1,\ldots ,p_s\) are odd primes, \(q_1,\ldots ,q_t\) and \(r_1,\ldots ,r_u\) are prime powers with \(q_i\equiv 1\ (\mathrm{mod}\ 4)\) and \(r_i\equiv 1\ (\mathrm{mod}\ 4)\) for all \(i, s_1,\ldots ,s_w\) are integers with \(1\le s_i \le 33\) or \(s_i\in \{39,43\}\) for all \(i, x\) is a positive integer such that \(2x-1\) or \(4x-1\) is a prime power. Moreover, \(\delta =1\) if \(x>1\) and \(c+s>0, \delta =0\) otherwise, \(\epsilon =1\) if \(x=1, c+s=0\) , and \(t+u+w>0, \epsilon =0\) otherwise. We also obtain some necessary conditions for the existence of \((2m,2,2m,m)\) relative difference sets in partial semidirect products of \(\mathbb{Z }_4\) with abelian groups, and provide a table cases for which \(m\le 100\) and the existence of such relative difference sets is open.  相似文献   

16.
In this paper we investigate the non-autonomous elliptic equations \(-\Delta u = |x|^{\alpha } u_{+}^{p}\) in \( \mathbb{R }^{N}\) and in \( \mathbb{R }_+^{N}\) with the Dirichlet boundary condition, with \(N \ge 2\) , \(p>1\) and \(\alpha >-2\) . We consider the weak solutions with finite Morse index and obtain some classification results.  相似文献   

17.
Let \(G\) be a connected Lie group and \(S\) a generating Lie semigroup. An important fact is that generating Lie semigroups admit simply connected covering semigroups. Denote by \(\widetilde{S}\) the simply connected universal covering semigroup of \(S\) . In connection with the problem of identifying the semigroup \(\Gamma (S)\) of monotonic homotopy with a certain subsemigroup of the simply connected covering semigroup \(\widetilde{S}\) we consider in this paper the following subsemigroup $$\begin{aligned} \widetilde{S}_{L}=\overline{\left\langle \mathrm {Exp}(\mathbb {L} (S))\right\rangle } \subset \widetilde{S}, \end{aligned}$$ where \(\mathrm {Exp}:\mathbb {L}(S)\rightarrow S\) is the lifting to \( \widetilde{S}\) of the exponential mapping \(\exp :\mathbb {L}(S)\rightarrow S\) . We prove that \(\widetilde{S}_{L}\) is also simply connected under the assumption that the Lie semigroup \(S\) is right reversible. We further comment how this result should be related to the identification problem mentioned above.  相似文献   

18.
The paper deals with standing wave solutions of the dimensionless nonlinear Schrödinger equation where the potential \(V_\lambda :\mathbb {R}^N\rightarrow \mathbb {R}\) is close to an infinite well potential \(V_\infty :\mathbb {R}^N\rightarrow \mathbb {R}\) , i. e. \(V_\infty =\infty \) on an exterior domain \(\mathbb {R}^N\setminus \Omega \) , \(V_\infty |_\Omega \in L^\infty (\Omega )\) , and \(V_\lambda \rightarrow V_\infty \) as \(\lambda \rightarrow \infty \) in a sense to be made precise. The nonlinearity may be of Gross–Pitaevskii type. A standing wave solution of \((NLS_\lambda )\) with \(\lambda =\infty \) vanishes on \(\mathbb {R}^N\setminus \Omega \) and satisfies Dirichlet boundary conditions, hence it solves We investigate when a standing wave solution \(\Phi _\infty \) of the infinite well potential \((NLS_\infty )\) gives rise to nearby solutions \(\Phi _\lambda \) of the finite well potential \((NLS_\lambda )\) with \(\lambda \gg 1\) large. Considering \((NLS_\infty )\) as a singular limit of \((NLS_\lambda )\) we prove a kind of singular continuation type results.  相似文献   

19.
Let \(\varOmega \) be a domain in \(\mathbb {R}^{d+1}\) whose boundary is given as a uniform Lipschitz graph \(x_{d+1}=\eta (x)\) for \(x \in \mathbb {R}^d\) . For such a domain, it is known that the Helmholtz decomposition is not always valid in \(L^p(\varOmega )\) except for the energy space \(L^2 (\varOmega )\) . In this paper we show that the Helmholtz decomposition still holds in certain anisotropic spaces which include vector fields decaying slowly in the \(x_{d+1}\) variable. In particular, these classes include some infinite energy vector fields. For the purpose, we develop a new approach based on a factorization of divergence form elliptic operators whose coefficients are independent of one variable.  相似文献   

20.
Let \(p\) be a prime and let \(A\) be a nonempty subset of the cyclic group \(C_p\) . For a field \({\mathbb F}\) and an element \(f\) in the group algebra \({\mathbb F}[C_p]\) let \(T_f\) be the endomorphism of \({\mathbb F}[C_p]\) given by \(T_f(g)=fg\) . The uncertainty number \(u_{{\mathbb F}}(A)\) is the minimal rank of \(T_f\) over all nonzero \(f \in {\mathbb F}[C_p]\) such that \(\mathrm{supp}(f) \subset A\) . The following topological characterization of uncertainty numbers is established. For \(1 \le k \le p\) define the sum complex \(X_{A,k}\) as the \((k-1)\) -dimensional complex on the vertex set \(C_p\) with a full \((k-2)\) -skeleton whose \((k-1)\) -faces are all \(\sigma \subset C_p\) such that \(|\sigma |=k\) and \(\prod _{x \in \sigma }x \in A\) . It is shown that if \({\mathbb F}\) is algebraically closed then $$\begin{aligned} u_{{\mathbb F}}(A)=p-\max \{k :\tilde{H}_{k-1}(X_{A,k};{\mathbb F}) \ne 0\}. \end{aligned}$$ The main ingredient in the proof is the determination of the homology groups of \(X_{A,k}\) with field coefficients. In particular it is shown that if \(|A| \le k\) then \(\tilde{H}_{k-1}(X_{A,k};{\mathbb F}_p)\!=\!0.\)   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号