首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Pentanuclear linear chain Pt(II,III) complexes [[Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]2[PtX'4]].nCH3COCH3 (X = X' = Cl, n = 2 (1a), X = Cl, X' = Br, n = 1 (1b), X = Br, X' = Cl, n = 2 (1c), X = X' = Br, n = 1 (1d)) composed of a monomeric Pt(II) complex sandwiched by two amidate-bridged Pt dimers were synthesized from the reaction of the acetonyl dinuclear Pt(III) complexes having equatorial halide ligands [Pt2(NH3)2X2((CH3)3CCONH)2(CH2COCH3)]X' ' (X = Cl (2a), Br (2b), X' ' = NO3-, CH3C6H4SO3-, BF4-, PF6-, ClO4-), with K2[PtX'4] (X' = Cl, Br). The X-ray structures of 1a-1d show that the complexes have metal-metal bonded linear Pt5 structures, and the oxidation state of the metals is approximately Pt(III)-Pt(III)...Pt(II)...Pt(III)-Pt(III). The Pt...Pt interactions between the dimer units and the monomer are due to the induced Pt(II)-Pt(IV) polarization of the Pt(III) dimeric unit caused by the electron withdrawal of the equatorial halide ligands. The density functional theory calculation clearly shows that the Pt...Pt interactions between the dimers and the monomer are made by the electron transfer from the monomer to the dimers. The pentanuclear complexes have flexible Pt backbones with the Pt chain adopting either arch or sigmoid structures depending on the crystal packing.  相似文献   

2.
Complexes (R3P)2PtF2 were prepared by reaction of the corresponding diiodo precursors with AgF in dichloromethane. The intermediate formation of trans- and cis-(R3P)2Pt(I)F was also observed. All fluoro complexes demonstrate a strong preference for the cis-configuration (R = Ph or Et) unless a bulky phosphine ligand is used (R = i-Pr), in which case the trans complex was observed. The Pt(IV) difluoro compounds (R3P)2Ar2PtF2 were obtained by reacting the Pt(II) diaryl precursors with XeF2. The fluoro ligands are located in the trans-position relative to the aryl groups in the overall octahedral environment. The representative Pt(II) and Pt(IV) difluoro complexes were characterized by X-ray crystallography. All fluoro compounds react rapidly with chlorotrimethylsilane to give the corresponding chloro complexes. The Pt(IV) difluorides are remarkably stable in the C-C reductive elimination reaction, relative to their dichloro analogs which reductively eliminate diaryl within several hours at 45 degrees C in N-methylpyrrolidone. It was found that phosphine dissociation from the octahedral Pt(IV) complex is essential for the reductive elimination reaction to take place, the difluoro complex being kinetically stable even at 60 degrees C.  相似文献   

3.
Five-coordinate platinum(IV) alkyl complexes bearing sterically non-demanding pyridylpyrrolide ligands, (LX)PtMe(3) [LX = 3,5-di-tert-butyl-2-(2-pyridyl)pyrrolide (3a) and 3,5-diphenyl-2-(2-pyridyl)pyrrolide (3b)] have been prepared. An X-ray structure of 3a establishes that it is a five-coordinate Pt(IV) complex with a square-pyramidal geometry. Thermolysis of 3a or 3b in C(6)D(6) with ethylene results in reductive elimination of ethane (C(2)H(6)) and methane (CH(4) and CH(3)D) and the formation of cyclometalated platinum(II) ethylene complexes 4a or 4b, respectively. Results of kinetic investigations of the reaction of 3b are consistent with a mechanism of direct C-C reductive elimination from the five-coordinate Pt(IV) compound. Thermolysis of 3a in C(6)D(6) with no ethylene present forms a novel dinuclear complex (5-d(6)).  相似文献   

4.
Reaction of the trinuclear Pt(III)-Pt(III)-Pt(II) [(C6F5)2Pt(III)(mu-PPh2)2Pt(III)(mu-PPh2)2Pt(C6F5)2] (2) derivative with NBu4Br or NBu4I results in the formation of the trinuclear Pt(II) complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = I (3), Br (4)] through an intramolecular PPh2/C6F5 reductive coupling and the formation of the phosphine PPh2C6F5. The trinuclear Pt(II) complex [(PPh2C6F5)(C6F5)Pt(mu-PPh2)Pt(mu-PPh2)2Pt(C6F5)2] (5), which displays two Pt-Pt bonds, can be obtained either by halide abstraction in 4 or by refluxing of 2 in CH2Cl2. This latter process also implies an intramolecular PPh2/C6F5 reductive coupling. Treatment of complex 5 with several ligands (Br-, H-, and CO) results in the incorporation of the ligand to the cluster and elimination of one (X = H-) or both (X = Br-, CO) Pt-Pt bonds, forming the trinuclear complexes [NBu4][(PPh2C6F5)(C6F5)Pt(mu-PPh2)(mu-X)Pt(mu-PPh2)2Pt(C6F5)2] [X = Br (6), H (7)] or [(PPh2C6F5)(C6F5)Pt(mu-PPh2)2Pt(mu-PPh2)(CO)Pt(C6F5)2(CO)] (8). The structures of the complexes have been established on the basis of 1H, 19F, and 31P NMR data, and the X-ray structures of the complexes 2, 3, 5, and 7 have been established. The chemical relationship between the different complexes has also been studied.  相似文献   

5.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

6.
Platinum(IV) complexes containing monodentate sulfonamide ligands, fac-(dppbz)PtMe(3)(NHSO(2)R) (dppbz = o-bis(diphenylphosphino)benzene; R = p-C(6)H(4)(CH2)(3)CH(3) (1a), p-C(6)H(4)CH(3) (1b), CH(3) (1c)), have been synthesized and characterized, and their thermal reactivity has been explored. Compounds 1a-c undergo competitive C-N and C-C reductive elimination upon thermolysis to form N-methylsulfonamides and ethane, respectively. Selectivity for either C-N or C-C bond formation can be achieved by altering the reaction conditions. Good yields of the C-N-coupled products were observed when the thermolyses of 1a-c were conducted in benzene-d(6). In contrast, exclusive C-C reductive elimination occurred upon themolysis of 1a,b in nitrobenzene-d(5). When the thermolyses of 1a were performed in the presence of sulfonamide anion NHSO2R- in benzene-d(6), ethane elimination was completely inhibited and C-N reductive elimination products were formed in high yield. Mechanistic studies support a two-step reaction pathway involving initial dissociation of NHSO(2)R(-) from the platinum center, followed by nucleophilic attack of this anion on a methyl group of the resulting five-coordinate platinum(IV) cation to form MeNHSO(2)R and (dppbz)PtMe(2). C-C reductive elimination to form ethane occurs directly from the five-coordinate Pt(IV) cation.  相似文献   

7.
Cationic complexes of the type fac-[(L(2))Pt(IV)Me(3)(pyr-X)][OTf] (pyr-X = 4-substituted pyridines; L(2) = diphosphine, viz., dppe = bis(diphenylphosphino)ethane and dppbz = o-bis(diphenylphosphino)benzene; OTf = trifluoromethanesulfonate) undergo C-C reductive elimination reactions to form [L(2)Pt(II)Me(pyr-X)][OTf] and ethane. Detailed studies indicate that these reactions proceed by a two-step pathway, viz., initial reversible dissociation of the pyridine ligand from the cationic complex to generate a five-coordinate Pt(IV) intermediate, followed by irreversible concerted C-C bond formation. The reaction is inhibited by pyridine. The highly positive values for DeltaS()(obs) = +180 +/- 30 J K(-1) mol(-1), DeltaH(obs) = 160 +/- 10 kJ mol(-1), and DeltaV()(obs) = +16 +/- 1 cm(3) mol(-1) can be accounted for in terms of significant bond cleavage and/or partial reduction from Pt(IV) to Pt(II) in going from the ground to the transition state. These cationic complexes have provided the first opportunity to carry out detailed studies of C-C reductive elimination from cationic Pt(IV) complexes in a variety of solvents. The absence of a significant solvent effect for this reaction provides strong evidence that the C-C reductive coupling occurs from an unsaturated five-coordinate Pt(IV) intermediate rather than from a six-coordinate Pt(IV) solvento species.  相似文献   

8.
A series of new complexes [(L-L)Pd(Ar)(CF3)] (L-L = dppe, dppp, tmeda; Ar = Ph, p-Tol, C6D5) have been synthesized and fully characterized in solution and in the solid state. Remarkable Ph-X activation (X = I, Cl) by [(dppe)Pd(Ph)(CF3)] (1) has been found to come about to cleanly produce biphenyl and [(dppe)Pd(Ph)(X)]. This reaction does not take place under rigorously anhydrous conditions but in the presence of traces of water it readily occurs, exhibiting an induction period and being zero order in PhI. As shown by mechanistic studies, the role of water is to promote reduction of small quantities of the Pd(II) complex to Pd(0) which activates the Ph-X bond. Subsequent transmetalation to give diphenyl Pd complexes, followed by Ph-Ph reductive elimination give rise to the observed products. The water-induced reduction to catalytically active Pd(0) has been demonstrated to proceed via both the Pd(II)/P(III) to Pd(0)/P(V) redox mechanism and alpha-F transfer, followed by facile hydrolysis of the difluorocarbene to carbonyl, migratory insertion, and reductive elimination of PhC(X)O (X = F, OH, or OOCPh). In the absence of H2O and ArX, the diphosphine-stabilized trifluoromethyl Pd phenyl complexes undergo slow Ph-CF3 reductive elimination under reinforcing conditions (xylenes, 145 degrees C).  相似文献   

9.
Reaction of Pd(TMEDA)(CH(3))(2) [TMEDA = tetramethylethylenediamine] with fluoroalkyl iodides R(F)I affords a series of square planar Pd(II) complexes Pd(TMEDA)(CH(3))(R(F)) [R(F) = CF(2)CF(3) (9), CFHCF(3) (10), CH(2)CF(3) (11)], presumably by oxidative addition followed by reductive elimination of CH(3)I. The solid-state structures of each compound have been determined by single crystal X-ray diffraction studies, allowing the effect of increasing alpha-fluorination on the structural trans-influence of alkyl ligands to be examined. In these compounds there is no significant difference observed in the trans-influence of the three fluorinated alkyl ligands toward the trans-N atom, although a significant cis-influence on the neighboring methyl ligand is apparent. Oxidative addition of the same series of fluoroalkyl ligands to the corresponding Pt(TMEDA)(CH(3))(2) affords octahedral Pt(IV) complexes trans-Pt(TMEDA)(CH(3))(2)(R(F))I [R(F) = CF(2)CF(3) (12), CFHCF(3) (13), CH(2)CF(3) (14)] as the kinetic products. In each case, subsequent isomerization to the corresponding all cis-isomers is observed; in the case of 13, the stereocenter at the alpha-carbon results in two diastereomeric cis-isomers, which are formed at different rates. The molecular structures of 13 and its more stable all cis-isomer 16b have been crystallographically determined. Kinetic studies of the trans-cis isomerization reactions show the mechanism to involve a polar transition state, presumably involving iodide dissociation, followed by rearrangement of the cation, and iodide recombination. High dielectric solvents increase the rate, but solvent coordinating ability has no effect. Dissolved salts (LiI, LiOTf) show normal accelerative salt effects, with no inhibition in the case of added iodide, consistent with the formation of an intimate ion pair intermediate. The kinetic parameters show that the trans-effects of fluoroalkyl ligands in these compounds follow the order expected from the relative sigma-donor properties of the ligands, with CF(2)CF(3) < CFHCF(3) < CH(2)CF(3).  相似文献   

10.
New proton and electron donors, M(II)(HL)(2) (M = Ni, Pd, Pt; L = 5,6-diethylpyradzinedithiolate), as well as a proton and electron acceptor, Pt(IV)(L)(2), were prepared and characterized. The pH-dependent cyclic voltammetry of the M(II)(HL)(2) complexes revealed a favorable Gibbs free energy (K(com) > 1) for the proton and electron transfer reactions from M(II)(HL)(2) to M(IV)(L)(2); i.e., the equilibrium for the following reaction lies to the right: M(II)(HL)(2) + M(IV)(L)(2) <==>2M(III)(HL)(L).  相似文献   

11.
The 15N NMR data for 105 complexes of Pd(II), Pt(II), Au(III), Co(III), Rh(III), Ir(III), Pd(IV), and Pt(IV) complexes with simple azines such as pyridine, 2,2'-bipyridine, 1,10-phenanthroline, quinoline, isoquinoline, 2,2'-biquinoline, 2,2':6', 2'-terpyridine and their alkyl or aryl derivatives have been reviewed. The 15N NMR coordination shifts, i.e. the differences between the 15N chemical shifts of the same nitrogen in the molecules of the complex and the ligand (Delta(15N) (coord) = delta(15N) (compl)--delta(15N) (lig)), have been related to some structural features of the reviewed coordination compounds, like the type of the central ion and the character of auxiliary ligands (mainly in trans position). These Delta(15N) (coord) parameters are negative, their absolute magnitudes (ca 30-150 ppm) generally increasing in the metal order Au(III) < Pd(II) < Pt(II) and Rh(III) < Co(III) < Pt(IV) < Ir(III), as well as with the enhanced trans influence of the other donor atoms (H, C < Cl < N).  相似文献   

12.
The phosphine-bridged linear trinuclear and pentanuclear complexes with Pd(II)-Pt(II)-Pd(II), Ni(II)-Pt(II)-Ni(II), and Rh(III)-Pd(II)-Pt(II)-Pd(II)-Rh(III) metal-ion sequences were almost quantitatively formed by the stepwise phosphine-bridging reaction of the terminal phosphino groups of tris[2-(diphenylphosphino)ethyl]phosphine (pp3), which is the tetradentate bound ligand of the starting Pd(II) and Ni(II) complexes. The solid-state structures of the trinuclear complexes were determined by X-ray structural analyses, and the structures of the polynuclear complexes in solution were characterized by NMR spectroscopy. The trans and cis isomers of the trinuclear and pentanuclear complexes, which arise from the geometry around the Pt(II) center, were selectively obtained simply by changing the counteranion of the starting complexes: the tetrafluoroborate salts, [MX(pp3)](BF4) [M = Pd(II) or Ni(II), X = Cl- or 4-chlorothiophenolate (4-Cltp-)], gave only the trans isomers, and the chloride salt, [PdCl(pp3)]Cl, gave only the cis isomers. The formation of the trinuclear complex with the 4-Cltp- and chloro ligands, trans-[Pt(4-Cltp)2{PdCl(pp3)}2](BF4)2, proceeded with exchange between the thiolato ligand in the starting Pd(II) complex, [Pd(4-Cltp)(pp(3))](BF4), and the chloro ligands in the starting Pt(II) complex, trans-[PtCl2(NCC6H5)2], retaining the trans geometry around the Pt(II) center. In contrast, the formation reaction between [PdCl(pp3)]Cl and trans-[PtCl2(NCC6H5)2] was accompanied by the trans-to-cis geometrical change on the Pt(II) center to give the trinuclear complex, cis-[PtCl2{PdCl(pp3)}2]Cl2. The mechanisms of these structural conversions during the formation reactions were elucidated by the 31P NMR and absorption spectral changes. The differences in the catalytic activity for the Heck reaction were discussed in connection with the bridging structures of the polynuclear complexes in the catalytic cycle.  相似文献   

13.
This review presents syntheses, structures and the reactivity of platina-beta-diketones [Pt2{(COR)2H}2(mu-Cl)2] (R = alkyl, omega-phenylalkyl), being the first electronically unsaturated (16 ve; ve-valence electrons) and kinetically labile metalla-beta-diketones. They were found to react with amines, yielding platina-beta-diketonates of platina-beta-diketones having Pt(4) zigzag chains analogous to platinum blue complexes. Reactions of platina-beta-diketones with monodentate and bidentate N-, P-, As-, O-, and S-donor ligands are described resulting in the formation of acyl(hydrido)platinum(IV) complexes, acyl(chloro)platinum(II) complexes, platinum complexes having enamine-amide type ligands, and of platinum(II) complexes with cyclic aminocarbene ligands, respectively. These reactions are discussed in terms of oxidative addition and reductive elimination reactions showing that platina-beta-diketones react as hydroxycarbene complexes whose OH groups are intramolecularly hydrogen-bridged to acyl ligands. Furthermore, the synthesis and structures of dinuclear platinum(II) complexes with bridging mu-acyl(hydroxycarbene) ligands are presented.  相似文献   

14.
The Pt(IV) complexes P(2)PtMe(3)R [P(2) = dppe (PPh(2)(CH(2))(2)PPh(2)), dppbz (o-PPh(2)(C(6)H(4))PPh(2)); R = Me, H] undergo reductive elimination reactions to form carbon-carbon or carbon-hydrogen bonds. Mechanistic studies have been carried out for both C-C and C-H coupling reactions and the reductive elimination reactions to form ethane and methane are directly compared. For C-C reductive elimination, the evidence supports a mechanism of initial phosphine chelate opening followed by C-C coupling from the resulting five-coordinate intermediate. In contrast, mechanistic studies on C-H reductive elimination support an unusual pathway at Pt(IV) of direct coupling without preliminary ligand loss. The complexes fac- P(2)PtMe(3)R (P(2) = dppe, R = Me, H; P(2) = dppbz, R = Me) have been characterized crystallographically. The Pt(IV) hydrides, fac-P(2)PtMe(3)H (P(2) = dppe, dppbz), are rare examples of stable phosphine ligated Pt(IV) alkyl hydride complexes.  相似文献   

15.
Variable-temperature 1H NMR studies of the reaction of cationic (alpha-diimine)Pd-alkyl complexes with alkenes are presented. The studies reveal that vinyl bromide coordinates to the Pd(II)-Me complex followed by migratory insertion and beta-bromo elimination, to generate free propene. Propene further reacts to give beta-agostic Pd(II)-tert-butyl species. From the reactions with vinyl bromide, stable chloro-bridged dicationic Pd complex was isolated and characterized. For a series of alkenes (CH2=CHX), the rate for migratory insertion decreases as follows: X = CO2Me > Br > H > Me.  相似文献   

16.
Symmetrical bis-aryl platinum complexes (DPPF)Pt(C(6)H(4)-4-R)(2) (R = NMe(2), OMe, CH(3), H, Cl, CF(3)) and electronically unsymmetrical bis-aryl platinum complexes (DPPF)Pt(C(6)H(4)-4-R)(C(6)H(4)-4-X) (R = CH(3), X = NMe(2), OMe, H, Cl, F, CF(3); R = OMe, X = NMe(2), H, Cl, F, CF(3); R = CF(3), X = H, Cl, NMe(2); and R = NMe(2), X = H, Cl) were prepared, and the rates of reductive elimination of these complexes in the presence of excess PPh(3) are reported. The platinum complexes reductively eliminated biaryl compounds in quantitative yields with first-order rate constants that were independent of the concentration of PPh(3). Plots of Log(k(obs)/k(obs(H))) vs Hammett substituent constants (sigma) of the para substituents R and X showed that the rates of reductive elimination reactions depended on two different electronic properties. The reductive elimination from symmetrical bis-aryl platinum complexes occurred faster from complexes with more electron-donating para substituents R. However, reductive elimination from a series of electronically unsymmetrical bis-aryl complexes was not faster from complexes with the more electron-donating substituents. Instead, reductive elimination was faster from complexes with a larger difference in the electronic properties of the substituents on the two platinum-bound aryl groups. The two electronic effects can complement or cancel each other. Thus, this combination of electronic effects gives rise to complex, but now more interpretable, free energy relationships for reductive elimination.  相似文献   

17.
The mechanism and kinetics of the solvolysis of complexes of the type [(L-L)Pd(C(O)CH(3))(S)](+)[CF(3)SO(3)](-) (L-L = diphosphine ligand, S = solvent, CO, or donor atom in the ligand backbone) was studied by NMR and UV-vis spectroscopy with the use of the ligands a-j: SPANphos (a), dtbpf (b), Xantphos (c), dippf (d), DPEphos (e), dtbpx (f), dppf (g), dppp (h), calix-6-diphosphite (j). Acetyl palladium complexes containing trans-coordinating ligands that resist cis coordination (SPANphos, dtbpf) showed no methanolysis. Trans complexes that can undergo isomerization to the cis analogue (Xantphos, dippf, DPEphos) showed methanolyis of the acyl group at a moderate rate. The reaction of [trans-(DPEphos)Pd(C(O)CH(3))](+)[CF(3)SO(3)](-) (2e) with methanol shows a large negative entropy of activation. Cis complexes underwent competing decarbonylation and methanolysis with the exception of 2j, [cis-(calix-diphosphite)Pd(C(O)CH(3))(CD(3)OD)](+)[CF(3)SO(3)](-). The calix-6-diphosphite complex showed a large positive entropy of activation. It is concluded that ester elimination from acylpalladium complexes with alcohols requires cis geometry of the acyl group and coordinating alcohol. The reductive elimination of methyl acetate is described as a migratory elimination or a 1,2-shift of the alkoxy group from palladium to the acyl carbon atom. Cis complexes with bulky ligands such as dtbpx undergo an extremely fast methanolysis. An increasing steric bulk of the ligand favors the formation of methyl propanoate relative to the insertion of ethene leading to formation of oligomers or polymers in the catalytic reaction of ethene, carbon monoxide, and methanol.  相似文献   

18.
《Analytical letters》2012,45(10):1557-1565
Abstract

A spectrometric study of the reaction between Pd(II), Fe(III) and Pt(IV) ions, and Mandelazo I was carried out. The optimum conditions favouring the formation of the complexes are extensively investigated. The stoichiometry of the complexes formed in solution (1:2, 1:1, 1:1), their apparent stability constants (5.45 × 109, 2.39 × 106, 4.12 × 105) and the ranges for obedience to beer's law (0.2 – 6.4, 0.25 – 7.0, 1.5 – 42.0 μg/mL) are reported for Pd(II), Fe(III) and Pt(IV), respectively. The effect of some metal ions including Cu(II), Zn(II), Mn(II), Cd(II), Hg(II), Co(II), Ni(II), Be(II), Al(III), Th(IV) and U(VI), on the maximum absorbance of the formed complexes was also investigated.  相似文献   

19.
The halide-induced ligand rearrangement reaction (HILR) has been employed to provide selective and exclusive in situ formation of heteroligated Rh(I), Pd(II), and Pt(II) complexes with bidentate phosphino-chalcoether ligands. To gain insights on the nature of this unique reaction, we explored this process via the stepwise addition of bidentate phosphino-chalcoether (P, X; X = S or Se) and relevant monodentate phosphine ligands with a Pt(II) metal precursor. The corresponding monoligated complexes were obtained in quantitative yields by reacting 1 equiv of a P, X bidentate ligand with Pt(II) and were fully characterized via single crystal X-ray diffraction studies and heteronuclear ((31)P, (77)Se, and (195)Pt) NMR spectroscopy in solution. These species were further reacted with a second equivalent of either a bidentate ligand or the monodentate ethyl diphenylphosphine ligand, resulting in the clean formation of the heteroligated species or, in the case of the monodentate ligand with an electron-withdrawing bidentate ligand, a mixture of products. On the basis of competitive exchange reactions between these heteroligated, homoligated, and monoligated complexes, we conclude that ligand chelation plays a crucial role in the Pt(II) HILR. The in situ preferable formation of the stable monoligated complex allows for ligand sorting to occur in these systems. In all cases where the heteroligated product results, the driving force to these species is ligand chelation.  相似文献   

20.
Vibrational study of new Pt(II) and Pd(II) complexes of functionalized nitrogen-containing tertiary phosphine oxides, namely ortho-, meta- and para-dimethylphosphinylmethyleneoxyaniline (o-, m- and p-dpmoa), (CH3)2P(O)CH2OC6H4NH2, have been presented. Geometry optimization of the ligands was performed at HF/6-31G* and B3LYP/6-31G* levels of the theory. Harmonic frequencies were calculated at HF/6-31G* optimized geometries. Relative gas-phase and solution-phase (H2O and CH3CN) basicities of o-, m- and p-dpmoa ligands have been determined by ab initio calculations at STO-3G level with the Onsager reaction field model. On the basis of the vibrational study, physical and analytical data it was suggested that the ligands in the complexes studied coordinate through the amino group and form square-planar platinum and palladium complexes of the general formula ML2Cl2 (M = Pt, Pd, L = o-, m- and p-dpmoa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号