首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The competitive sorption of carbonate and arsenic to hematite was investigated in closed-system batch experiments. The experimental conditions covered a pH range of 3-7, arsenate concentrations of 3-300 μM, and arsenite concentrations of 3-200 μM. Dissolved carbonate concentrations were varied by fixing the CO(2) partial pressure at 0.39 (atmospheric), 10, or 100 hPa. Sorption data were modeled with a one-site three plane model considering carbonate and arsenate surface complexes derived from ATR-FTIR spectroscopy analyses. Macroscopic sorption data revealed that in the pH range 3-7, carbonate was a weak competitor for both arsenite and arsenate. The competitive effect of carbonate increased with increasing CO(2) partial pressure and decreasing arsenic concentrations. For arsenate, sorption was reduced by carbonate only at slightly acidic to neutral pH values, whereas arsenite sorption was decreased across the entire pH range. ATR-FTIR spectra indicated the predominant formation of bidentate binuclear inner-sphere surface complexes for both sorbed arsenate and sorbed carbonate. Surface complexation modeling based on the dominant arsenate and carbonate surface complexes indicated by ATR-FTIR and assuming inner-sphere complexation of arsenite successfully described the macroscopic sorption data. Our results imply that in natural arsenic-contaminated systems where iron oxide minerals are important sorbents, dissolved carbonate may increase aqueous arsenite concentrations, but will affect dissolved arsenate concentrations only at neutral to alkaline pH and at very high CO(2) partial pressures.  相似文献   

2.
Sorption of H(4)SiO(4) (including experiments as a function of time, K(d) measurement with different m/v ratios and sorption edges) onto different iron (hydro)oxides as goethite (alpha-FeOOH), hematite (alpha-Fe(2)O(3)), and magnetite (Fe(3)O(4)) has been studied with concentration of silicates under solubility limit. A surface complexation model has been used to account for sorption edge of silicates onto these iron oxide surfaces. It reveals that two types of surface complex namely FeH(3)SiO(4) and FeH(2)SiO(4)(-), are needed to describe properly the experimental observations.  相似文献   

3.
The sorption of Co(II) on colloidal hematite was studied as a function of pH, ionic strength, and Co(II) concentration. Two different techniques were used, yielding two different sets of information: (i) potentiometric titrations that provide information on the number of protons released as a function of pH owing to the sorption of Co(II) and (ii) measurement of the amount of cobalt sorbed on the surface as a function of pH using a radioactive tracer, (60)Co. At low Co(II) concentrations (10(-8) M), the sorption was found to be independent of ionic strength but there seems to be a weak ionic strength dependence at higher Co(II) concentrations (10(-4) M). The adsorption edge moved to higher pH with increasing Co(II) concentration. For the high Co(II) concentration, the number of protons released per cobalt sorbed increased from zero to approximately 1.5. The basic charging properties of hematite were modeled with four different surface complexation models. The 1-pK Basic Stern Model (BSM), with binding of electrolyte ions to the Stern plane, seems to be the most reasonable model if the ambition is to describe experimental data at different ionic strengths. The sorption of cobalt was modeled with the 1-pK BSM. By introducing a low concentration of high affinity surface sites for cobalt sorption it was possible to model the sorption in very wide cobalt concentrations, ranging from 10(-8) M to 10(-4) M. Copyright 2000 Academic Press.  相似文献   

4.
A sorption modeling approach based on surface complexation concepts was applied to predict copper uptake and its effects on the surface electrostatic potential of ferric oxide and silica colloids. Equilibrium modeling of copper uptake by ferric oxide using the traditional surface complexation model (SCM) was reasonably successful with some discrepancies especially in the acidic pH ranges and high colloid concentration cases. Good predictions of the ferric oxide charge reversals during uptake were obtained from the modeling. Based on the SCM predictions, copper removal from solution is due to the outer-sphere complexation of the first hydrolysis product, resulting in the surface-metal complex SO(-)CuOH(+). The SCM was found to be insufficient to describe copper uptake by silica particles. To address discrepancies between experimental data and SCM predictions, the SCM was modified to include attributes of the surface polymer model (SPM), which incorporates sorption of the dimeric copper species Cu(2)(OH)(2)(2+). The continuum model (CM) was also studied as a second modification to the SCM to include formation of surface precipitates. Both the SPM and the CM were successful in modeling copper uptake and zeta potential variations as a function of pH at various solution conditions and colloid concentrations. From the SPM and CM predictions, it was concluded that for systems with high surface loadings, copper removal from solution occurs due to the formation of both monomeric and dimeric surface complexes, as well as through precipitation mechanisms.  相似文献   

5.
6.
The equilibirum sorption capacity of hydrous ferric oxide and ferric phosphate has been observed to increase on irradiation with γ-rays by 5.2 and 6.6%, respectively. The rate of sorption increases differently in the irradiated exchanger materials depending upon their characteristics nature; e.g., when the concentration of the Zn(ammine) solution is 0.10M, increase in the F-values, caused by irradiation is significantly more striking in the case of hydrous ferric oxide than in ferric phosphate. On the other hand, at lower external concentration of the Zn(ammine) ion (0.01M), the increase in F-values is more significant in the case of ferric phosphate.  相似文献   

7.
The distributions of Pb(II) and As(V)O4(3-) ions in the interfacial region between thin poly(acrylic acid) (PAA) coatings and aalpha-A12O3(0001), alpha-Al2O3(1-102), and alpha-Fe2O3(0001) single-crystal substrates were studied using long-period X-ray standing wave fluorescent yield (XSW-FY) and X-ray reflectivity techniques. The PAA film serves as a simplified analogue of natural organic matter (NOM) coatings on mineral surfaces. Such coatings are often assumed to play an important role in the partitioning and speciation of trace heavy metals in soils and aquatic systems. On the alpha-Al2O3(1-102) surface, Pb(II) ions were found to preferentially bind to the PAA coating, even at sub-micromolar Pb(II) concentrations, and to partition increasingly onto the metal oxide surface as the Pb(II) concentration was increased ([Pb(II)] = 5 x 10(-8) to 2 x 10(-5) M, pH = 4.5; 0.01 M NaCl background electrolyte). This observation suggests that the binding sites in the PAA coating outcompete those on the alpha-Al2O3(1-102) surface for Pb(II) under these conditions. The As(V)O4(3-) oxoanion partitions preferentially to the L-Al2O3(1-102) surface for the As(V)O4(3-) concentrations examined (1 x 10(-7) to 5 x 10(-7) M, pH = 4.5; 0.01 M NaCl background electrolyte). Partitioning of Pb(II) (at 1 x 10(-7) M and pH 4.5) was also examined at PAA/alpha-Al2O3(0001), and PAA/alpha-Fe2O3(0001) interfaces using XSW-FY measurements. Our results show that the PAA coating was the dominant sink for Pb(II) in all three samples; however, the relative order of reactivity of these metal oxide surfaces with respect to Pb(II) sorption is alpha-Fe2O3(0001) > alpha-Al2O3(1-102) > alpha-Al2O3(0001). This order is consistent with that found in previous studies of the PAA-free surfaces. These XSW results strongly suggest that the characteristics of the organic film (i.e., binding affinity, type, and density of binding sites) as well as metal oxide substrate reactivity are key factors determining the distribution and speciation of Pb(II) and As(V)O4(3-) at organic film/metal oxide interfaces.  相似文献   

8.
The interaction of metalloproteins with oxides has implications not only for bioanalytical systems and biosensors but also in the areas of biomimetic photovoltaic devices, bioremediation, and bacterial metal reduction. Here, we investigate mitochondrial ferricytochrome c (Cyt c) co-sorption with 0.01 and 0.1 M phosphate on hematite (alpha-Fe2O3) surfaces as a function of pH (2-11). Although Cyt c sorption to hematite in the presence of phosphate is consistent with electrostatic attraction, other forces act upon Cyt c as well. The occurrence of multilayer adsorption, and our AFM observations, suggest that Cyt c aggregates as the pH approaches the Cyt c isoelectric point. In solution, methionine coordination of heme Fe occurs only between pH 3 and 7, but in the presence of phosphate this coordination is retained up to pH 10. Electrochemical evidence for the presence of native Cyt c occurs down to pH 3 and up to pH 10 in the absence of phosphate, and this range is extended to pH 2 and 11 in the presence of phosphate. Cyt c that initially adsorbs to a hematite surface may undergo conformation change and coat the surface with unfolded protein such that subsequently adsorbing protein is more likely to retain the native conformational state. AFM provides evidence for rapid sorption kinetics for Cyt c co-sorbed with 0.01 or 0.1 M phosphate. Cyt c co-sorbed with 0.01 M phosphate appears to unfold on the surface of hematite while Cyt c co-sorbed with 0.1 M phosphate possibly retains native conformation due to aggregation.  相似文献   

9.
ATR-IR spectroscopy was used to study the sorption of uranyl ions (10(-4) M) onto titanium oxide (mixture of rutile and anatase). A circulation setup, filled with a solution in D(2)O, allowed recording of the evolution of the antisymmetric O=U=O stretching of uranyl species onto titanium oxide particles deposited on the ATR crystal. The band centered at 915 cm(-1) has been decomposed in two Gaussian peaks at 920 and 905 cm(-1). From these values, and the observation that the ratio of the areas of the two peaks vs pH was constant, we have proposed that uranyl sorption on titanium oxide in the pH range 4-7 leads to the formation of one surface complex where uranium atoms have two different chemical environments. A trimer surface complex linked by two uranium atoms to the titanium oxide surface would be consistent with this interpretation.  相似文献   

10.
The sorption species and coordination environment of zinc sorbed on to hydrous ferric oxide (HFO) did not change for aging times up to six months. At an initial concentration of 10(4-) M, Zn formed innersphere surface complexes on the surface of HFO. Zn was tetrahedrally coordinated with oxygen atoms at ZnO bond distance of approximately 1.94-1.97 A with coordination number of approximately 3.8-4.7. In the second shell Zn appeared to be coordinated with Fe with a bond distance of approximately 3.42-3.49 A. At an initial concentration of 10(3-) M, both innersphere and polynuclear complexes were feasible sorption products. The first shell was tetrahedrally coordinated with about four oxygen atoms at a bond distance of 1.96 A. The second shell could be attributed to either ZnFe or ZnZn correlations with almost the same bond distance of 3.42-3.44 A.  相似文献   

11.
Ni(II) sorption onto iron oxides and in particular hydrous ferric oxide (HFO) is among the important processes impacting its distribution, mobility, and bioavailability in environment. To develop mechanistic models for Ni, extended X-ray absorption fine structure (EXAFS) analysis has been conducted on Ni(II) sorbed to HFO. Coprecipitation revealed the formation of the metastable alpha-Ni(OH)(2) at a Ni(II) loading of 3.5 x 10(-3) molg(-1). On the other hand, Ni(II) formed inner-sphere mononuclear bidentate complexes along edges of FeO(6) octahedra when sorbed to HFO surfaces with Ni-O distances of 2.05-2.07 A and Ni-Fe distances of 3.07-3.11 A. This surface complex was observed by EXAFS study over 2.8 x 10(-3) to 10(-1) ionic strength, pH from 6 to 7, a Ni(II) loading of 8 x 10(-4) to 8.1 x 10(-3) molg(-1) HFO, and reaction times from 4 hours to 8 months. The short- and long-range structure analyses suggest that the presence of Ni(II) inhibited transformation of the amorphous iron oxide into a more crystalline form. However, Ni(2+) was not observed to substitute for Fe(3+) in the oxide structure. This study systematically addresses Ni(II) adsorption mechanisms to amorphous iron oxide. The experimentally defined surface complexes can be used to constrain surface complexation modeling for improved prediction of metal distribution at the iron oxide/aqueous interface.  相似文献   

12.
The sorption of SeO(3)(2-) on hydroxyapatite surface was investigated in batch experiments over a range of pH and SeO(3)(2-) concentrations in the absence and presence of additional Ca and PO(4). The sorption is pH dependent with a maximum observed at pH values generally encountered in natural waters. While the presence of phosphate lowers SeO(3)(2-) sorption by direct competition, the presence of calcium enhances it. In order to identify the mechanism of sorption and the nature of the surface sites, microscopic observation and spectroscopic methods such as X-ray diffraction and X-ray photoelectron spectroscopy were used. Surface complexation, coprecipitation, and precipitation processes were ruled out. Localization of sorbed selenium in the crystallographic sites where phosphorus is normally located shows that selenite is sorbed on the apatite by an anionic exchange with phosphate groups. Although the exact equilibria involved could not be established, the stoichiometry of the exchange is close to 1 : 1. According to kinetics experiments and X-ray diffraction analyses, it seems that selenium is not exclusively located at the surface but diffuses slightly in a thickness of a few nanometers. Copyright 2000 Academic Press.  相似文献   

13.
A novel ion exchanger based on double hydrous oxide (Fe2O3Al2O3xH2O) was obtained by the original sol-gel method from easily available and cheap raw materials and employed for adsorption of F-, Cl-, Br-, and BrO-3 from simultaneous solutions. Adsorbent was characterized by potentiometric titration, zeta-potential, and poremetrical characteristics. A technologically attractive pH effect of F-, Br-, and BrO-3 sorption on the investigated double hydroxide of Fe and Al, which is capable of working in the pH range 3 to 8.5, was observed. Kinetic data on fluoride and bromide sorption fit well the pseudo-second-order model. Isotherms of fluoride, bromide, chlorine, and bromate ion sorption on Fe2O3Al2O3xH2O were obtained at pH 4. The isotherm of F- sorption fit well the Langmuir model; sorption affinity (K=0.52 L/mg) and sorption capacity (90 mg F/g) were high. In the competitive adsorption of bromide and bromate, bromide dominated at equilibrium concentrations of the ions >40 mg/L. The mechanism of fluoride adsorption to the surface of the model cluster of the sorbent synthesized and the geometry of the cluster itself were modeled with the HyperChem7 program using the PM3 method.  相似文献   

14.
Zn(II) sorption onto Al and Si oxides was studied as a function of pH (5.1-7.52), sorption density, and ionic strength. This study was carried out to determine the role of the various reaction conditions and sorbent phases in Zn complexation at oxide surfaces. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to probe the Zn atomic environment at the metal oxide/aqueous interface. For both amorphous silica and high-surface-area gibbsite, Zn sorption kinetics were rapid and reached completion within 24 h. In contrast, Zn sorption on low-surface-area-gibbsite was much slower, taking nearly 800 h for a sorption plateau to be reached. In the case of silica, EXAFS revealed that Zn was in octahedral coordination with first-shell oxygen atoms up to a surface loading of approximately 1 micro molm(-2), changing to tetrahedral coordination as surface loading and pH increased. For the high-surface-area gibbsite system, the Znz.sbnd;O first-shell distance was intermediate between values for tetrahedral and octahedral coordination over all loading levels. Zn formed inner-sphere adsorption complexes on both silica and high-surface-area gibbsite over all reaction conditions. For Zn sorption on low-surface-area gibbsite, formation of Znz.sbnd;Al layered double hydroxide (LDH) occurred and was the cause for the observed slow Zn sorption kinetics. The highest pH sample (7.51) in the Zn-amorphous silica system resulted in the formation of an amorphous Zn(OH)(2) precipitate with tetrahedral coordination between Zn and O. Aging the reaction samples did not alter the Zn complex in any of the systems. The results of this study indicate the variability of Zn complexation at surfaces prevalent in soil and aquatic systems and the importance of combining macroscopic observations with methods capable of determining metal complex formation mechanisms.  相似文献   

15.
Adsorption of arsenite and arsenate onto muscovite and biotite mica   总被引:1,自引:0,他引:1  
Arsenite and arsenate sorption was studied on two silt-sized phyllosilicates, namely muscovite and biotite, as a function of solution pH (pH 3-8 for muscovite, and 3-11 for biotite) at an initial As concentration of 13 microM. The amount of arsenic adsorbed increases with increasing pH, exhibiting a maximum value, before decreasing at higher pH values. Maxima correspond to 3.22+/-0.06 mmol kg-1 As(V) at pH 4.6-5.6 and 2.86+/-0.05 mmol kg-1 As(III) at pH 4.1-6.2 for biotite, and 3.08+/-0.06 mmolkg-1 As(III) and 3.13+/-0.05 mmol kg-1 As(V) at pH 4.2-5.5 for muscovite. The constant capacitance surface complexation model was used to explain the adsorption behavior. Biotite provides greater reactivity than muscovite toward arsenic adsorption. Isotherm data obeyed the Freundlich or Langmuir equation for the arsenic concentration range 10(-7)-10(-4) M. Released total Fe, Si, K, Al, and Mg in solution were analyzed. Calculation of saturation indices by PHREEQC indicated that the solution was undersaturated with respect to aluminum arsenate (AlAsO42H2O), scorodite (FeAsO42H2O), and claudetite/arsenolite (As4O6).  相似文献   

16.
Electrokinetic properties of α-Fe(2)O(3) (hematite) nanoparticle monolayers on mica were thoroughly characterized using the streaming potential method. Hematite suspensions were obtained by acidic hydrolysis of ferric chloride. The average size of particles (hydrodynamic diameter), determined by dynamic light scattering (DLS) and AFM, was 22nm (pH=5.5, I=10(-2)M). The hematite monolayers on mica were produced under diffusion-controlled transport from the suspensions of various bulk concentration. The monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express zeta potential of hematite monolayers, determined by the streaming potential measurements, in terms of the particle coverage. Such dependencies, obtained for various pH, were successfully interpreted in terms of the three-dimensional electrokinetic model. A universal calibrating graph was produced enabling one to determine hematite monolayer coverage from the measured value of the streaming potential. The influence of the ionic strength, varied between 10(-4) and 10(-2)M, on the zeta potential of hematite monolayers was also studied. Additionally, the stability of monolayers (desorption kinetics) was determined under in situ conditions using the streaming potential method. Our experimental data prove that it is feasible to produce uniform and stable hematite particle monolayers of well-controlled coverage. Such monolayers may find practical applications as universal substrates for protein immobilization (biosensors) and in electrocatalytic applications.  相似文献   

17.
18.
X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c (0001) and r (10–12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of “edge-sharing” bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. An erratum to this article can be found at  相似文献   

19.
Common complexing ligands such as chloride and sulfate can significantly impact the sorption of Hg(II) to particle surfaces in aqueous environmental systems. To examine the effects of these ligands on Hg(II) sorption to mineral sorbents, macroscopic Hg(II) uptake measurements were conducted at pH 6 and [Hg](i)=0.5 mM on goethite (alpha-FeOOH), gamma-alumina (gamma-Al(2)O(3)), and bayerite (beta-Al(OH)(3)) in the presence of chloride or sulfate, and the sorption products were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. The presence of chloride resulted in reduced uptake of Hg(II) on all three substrates over the Cl(-) concentration ([Cl(-)]) range 10(-5) to 10(-2) M, lowering Hg surface coverages on goethite, gamma-alumina, and bayerite from 0.42 to 0.07 micromol/m(2), 0.06 to 0.006 micromol/m(2), and 0.55 to 0.39 micromol/m(2) ([Cl(-)]=10(-5) to 10(-3) M only), respectively. This reduction in Hg(II) uptake is primarily a result of the formation of stable, nonsorbing aqueous HgCl(2) complexes in solution, limiting the amount of free Hg(II) available to sorb. At higher [Cl(-)] beam reduction of Hg(II) to Hg(I) was observed, resulting in the possible formation of aqueous Hg(2)Cl(2) species and the precipitation of calomel, Hg(2)Cl(2(s)). The presence of sulfate caused enhanced Hg(II) uptake over the sulfate concentration ([SO(4)(2-)]) range 10(-5) to 0.9 M, increasing Hg surface coverages on goethite, gamma-alumina, and bayerite from 0.39 to 0.45 micromol/m(2), 0.11 to 0.38 micromol/m(2), and 0.36 to 3.33 micromol/m(2), respectively. This effect is likely due to the direct sorption or accumulation of sulfate ions at the substrate interface, effectively reducing the positive surface charge that electrostatically inhibits Hg(II) sorption. Spectroscopic evidence for ternary surface complexation was observed in isolated cases, specifically in the Hg-goethite-sulfate system at high [SO(4)(2-)] and in the Hg-goethite-chloride system.  相似文献   

20.
Release of long-lived radioactivity to the aquatic bodies from various nuclear fuel cycle related operations is of great environmental concern in view of their possible migration into biosphere. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environment and sorption of species involving radionuclides on the sediments around the water bodies. 241/243Am are two major radionuclides which can contribute a great deal to radioactivity for several thousand years. In the present study, 241Am sorption on natural sediment collected from site near a nuclear installation in India, has been investigated under the varying conditions of pH (3–10) and ionic strength [I = 0.01–1 M (NaClO4)]. The sorption of Am increased with pH of the aqueous medium [10% (pH 2) to ~100% (pH 10)], which was explained in terms of the increased negative surface charge on the sediment particles. There was marginal variation in Am(III) sorption with increased ionic strength (within error limits) of the aqueous medium suggesting inner-sphere complexation/sorption process. Sediment was characterized for its elemental composition and structural phases using Energy Dispersive X-Ray (SEM-EDX) and X-Ray Diffraction (XRD) techniques. Zeta-potential measurement at I = 0.1 M (NaClO4) suggested that Point of Zero Charge (pHPZC) was ~2, indicating the presence of silica as major component in the sediment. Kurabtov plot using sorption data as a function of pH at fixed I = 0.1 M (NaClO4) indicated the presence of multiple Am(III) species present on the surface. Potentiometric titration of the suspension indicated the presence of mineral oxide like behavior and assuming a generic nature (≡XOH) for all types of surface sites, protonation–deprotonation constants and total number of sites have been obtained. The sorption data has been modeled using 2-pK Diffuse Double Layer Surface Complexation Model (DDL-SCM). ≡XOAm2+ has been identified as the main species responsible for the sorption profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号