首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies have been made of the effect on the flammability of thermoplastic polymers of the partial or total replacement of one metal compound by another in the presence also of a suitable halogen compound; particular attention has been paid to systems where the primary flame retardant is antimony(III) oxide. With each binary metal compound system investigated, ten different compositions have been chosen so as to provide a symmetrical arrangement of points within a triangular design; resulting calculated values of the limiting oxygen index for each polymer-flame retardant system for a given polymer are shown as a graphical contour analysis. Comprehensive studies of several systems show that both iron(III) oxide and aluminium oxide monohydrate can significantly enhance the flame-retardant action of antimony(III) oxide but that several other metal compounds, although not as effective as Sb2O3, may nevertheless be used as adequate partial replacements for it. The Fe2O3-SnO2-H2O system can also act as an effective flame retardant under certain conditions. The SnOZnO system perhaps best illustrates the importance of the polymer substrate and of the total additive loading as factors controlling the flame-retardant effectiveness. For all the systems studied, however, ABS is a much better substrate than HDPE. The results of a reasonably detailed study of the flame retardance conferred by several different compositions of a binary metal compound mixture give a much more reliable indication of the effects on polymer flammability of the constituent metal compounds than are obtained simply by replacement of a given concentration of one compound by another.  相似文献   

2.
Studies have been made of the flammability [expressed in terms of the limiting oxygen index (LOI)] and the smoke-forming tendency [expressed in terms of the maximum smoke density (Ds)] of systems containing widely varying proportions of an acrylonitrile-butadiene-styrene terpolymer (ABS), decabromobiphenyl (DBB) and (a) anhydrous aluminium(III) oxide, (b) aluminium(III) oxide monohydrate and (c) aluminium(III) oxide trihydrate. The values of LOI and Ds have been plotted by polynomials up to the fourth order and plotted in triangular diagrams. The optimum aluminium/halogen atomic ratios for flame retardance are different for the three oxides. Flame-retardant synergism has been observed, however, between all three oxides and DBB and is particularly marked with anhydrous alumina and the halogen compound. All the systems also give a significant degree of smoke-suppression. Simultaneous thermal analyses strongly suggest that the flame-retardant action of the aluminium compounds is not purely physical and is largely confined to the condensed phase.  相似文献   

3.
Flame retardance and smoke suppression have been studied in three systems containing acrylonitrile-butadiene-styrene terpolymer, decabromobiphenyl, and (a) commercial metastannic acid, (b) laboratory-prepared metastannic acid and (c) anhydrous tin(IV) oxide. Values of limiting oxygen index and smoke density have been measured for a large number of compositions in each system. They have then been fitted by fourth-order polynomials and plotted in triangular diagrams. Optimum atomic ratios for all these synergistic systems were found to be: Br/Sn = 9, a value which is much higher than would be expected from stoichiometric calculations. The systems also possess significant smoke-suppressant effectiveness.  相似文献   

4.
The speciation of inorganic Sb(III) and Sb(V) ions in aqueous solution was studied. The adsorption behavior of Sb(III) and Sb(V) ions were investigated as iodo and ammonium pyrollidine dithiocarbamate (APDC) complexes on a column filled with Amberlite XAD-8 resin. Sb(III) and Sb(V) ions were recovered quantitatively and simultaneously from a solution containing 0.8 M NaI and 0.2 M H2SO4 by the XAD-8 column. Sb(III) ions were also adsorbed quantitatively as an APDC complex, but the recovery of the Sb(V)-APDC complex was found to be <10% at pH 5. According to these data, the concentrations of total antimony as Sb(III)+Sb(V) ions and Sb(III) ion were determined with XAD-8/NaI+H2SO4 and XAD-8/APDC systems, respectively. The Sb(V) ion concentration was calculated by subtracting the Sb(III) concentration found with XAD-8/APDC system from the total antimony concentration found with XAD-8/NaI+H2SO4 system. The developed method was applied to determine Sb(III) and Sb(V) ions in samples of artificial seawater and wastewater.  相似文献   

5.
A novel method for prevention of the oxidation of Sb(III) during sample pretreatment, preconcentration of Sb(III) and Sb(V) with nanometer size titanium dioxide (rutile) and speciation analysis of antimony, has been developed. Antimony(III) could be selectively determined by flow injection-hydride generation-atomic absorption spectrometry, coexisting with Sb(V). Trace Sb(III) and Sb(V) were all adsorbed onto 50 m g TiO2 from 500 ml solution at pH 3.0 within 15 min, then eluted by 10 ml of 5 mol/l HCl solution. One eluent was directly used for the analysis of Sb(III); to the other eluent was added 0.5 g KI and 0.2 g thiourea to reduce Sb(V) to Sb(III), then the mixture was used for the determination of total antimony. The antimony(V) content is the mathematical difference of the two concentrations. Detection limits (based on 3sigma of the blank determinations, n=11) of 0.05 ng/ml for Sb(III) and 0.06 ng/ml for Sb(V), were obtained.  相似文献   

6.
《中国化学快报》2021,32(8):2519-2523
Environmental risks posed by discharge of the emerging contaminant antimony (Sb) into water bodies have raised global concerns recently. The toxicity of Sb has been shown to be species-dependent, with Sb(III) demonstrating much greater toxicity than Sb(V). Here, we proposed an electrochemical filtration system to achieve rapid detoxification of Sb(III) via a non-radical pathway. The key to this technology was an electroactive carbon nanotube filter functionalized with nanoscale Ti-Ce binary oxide. Under an electric field, in situ generated H2O2 could react with the Ti-Ce binary oxide to produce hydroperoxide complexes, which enabled an efficient transformation of Sb(III) to the less toxic Sb(V) (τ < 2 s) at neutral pH. The impact of important operational parameters was assessed and optimized, and system efficacy could be maintained over a wide pH range and long-term operation. An optimum detoxification efficiency of> 90% was achieved using lake water spiked with Sb(III) at 500 μg/L. The results showed that Ti/Ce-hydroperoxo surface complexes were the dominant species responsible for the non-radical oxidation of Sb(III) based on extensive experimental evidences and advanced characterizations. This study provides a robust and effective strategy for the detoxification of water containing Sb(III) and other similar heavy metal ions by integrating state-of-the-art advanced oxidation processes, electrochemistry and nano-filtration technology.  相似文献   

7.
A sensitive and simple method for flame atomic absorption spectrometry (FAAS) determination of antimony species after separation/preconcentration by cloud point extraction (CPE) has been developed. When the system temperature is higher than the cloud point extraction temperature, the complex of antimony (III) with N-benzoyl-N-phenyhydroxylamine (BPHA) can enter the surfactant-rich phase, whereas the antimony (V) remains in the aqueous phase. Antimony (III) in surfactant-rich phase was analyzed by FAAS and antimony (V) was calculated by subtracting of antimony (III) from the total antimony after reducing antimony (V) to antimony (III) by L-cysteine. The main factors affecting the cloud point extraction, such as pH, concentration of BPHA and Triton X-114, equilibration temperature and time, were investigated systematically. Under optimized conditions, the detection limits (3σ) were 1.82 ng mL−1 for Sb(III) and 2.08 ng mL−1 for Sb(total), and the relative standard deviations (RSDs) were 2.6% for Sb(III) and 2.2% for Sb(total). The proposed method was applied to the speciation of antimony species in artificial seawater and wastewater, and recoveries in the range of 95.3–106% were obtained by spiking real samples. This technique was validated by means of reference water materials and gave good agreement with certified values.  相似文献   

8.
Thermal analyses have been carried out on systems containing a thermoplastic polymer (ABS or HDPE), a halogenated hydrocarbon (decabromobiphenyl or a chlorinated wax) and one or two metal-containing compounds. The results were compared with flammability measurements on the same systems, as determined by limiting oxygen index. Thermal analyses of the additives on their own has shown the extent to which the metal compounds are volatilised as their metal halides, thus indicating their possible similarity to the mechanism of flame-retardant action of antimony oxide. Such results are shown to be misleading in terms of providing an indication of flame-retardant efficiency. However it is possible to obtain meaningful correlations between the information obtained from thermal analysis of complete systems, i.e. including the polymeric substrate, and comprehensive studies (e.g. by triangular diagrams) of the flammability.  相似文献   

9.
A new method for the speciation of inorganic [Sb(III) and Sb(V)] and organic (Me3SbCl2) antimony species by using a polystyrene-divinylbenzene-based anion-exchange HPLC column (Hamilton PRP-X100) coupled to hydride generation atomic fluorescence spectrometry (HG-AFS) is presented. Several mobile phases were tested for the baseline separation of these three antimony species, investigating in detail experimental parameters such as concentration and pH. The best efficiency and resolution was achieved by using a gradient elution between diammonium tartrate 250 mmol l(-1) pH 5.5 (A) and KOH 20 mmol l(-1) pH 12 (B). The gradient programme used was 100% B for 1.5 min, decreasing to 0% B in 0.1 min and maintained the elution with 100% A for 5.5 min. Analysis time was less than 7 min. Equilibration of the column with the complexing mobile phase was found to be critical in order to avoid Sb(III) double peak formation. Dilution in diammonium tartrate medium was necessary in order to avoid Sb(III) oxidation at microg l(-1) concentration level. Detection limits of 0.06 microg l(-1) for Sb(V), 0.09 microg l(-1) for Me3SbCl2 and 0.04 microg l(-1) for Sb(III) as well as repeatability and reproducibility better than 5% R.S.D. (n = 10) and 9% R.S.D. (n = 30) (for 1 and 5 microg l(-1) of Sb(V) and Sb(III) and 5 and 10 microg l(-1) of Me3SbCl2) were obtained. Accuracy and recovery studies were carried out by analysing one river freshwater sample and two water certified reference materials. The proposed methodology can be considered reliable and straightforward for antimony speciation in fresh water samples.  相似文献   

10.
Selective sorption of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a microcolumn packed with C16-bonded silica gel phase was used for the determination of Sb(III) and of total inorganic antimony after reducing Sb(V) to Sb(III) by l-cysteine. A flow injection system composed of a microcolumn connected to the tip of the autosampler was used for preconcentration. The sorbed antimony was directly eluted with ethanol into the graphite furnace and determined by AAS. The detection limit for antimony was significantly lowered to 0.007 μg l−1 in comparison to 1.7 μg l−1 for direct injection GFAAS. This procedure was applied for speciation determinations of inorganic antimony in tap water, snow and urine samples. For the investigation of long-term stability of antimony species a flow injection hydride generation atomic absorption spectrometry with quartz tube atomization (FI HG QT AAS) and GFAAS were used for selective determination of Sb(III) in the presence of Sb(V) and total content of antimony, respectively. Investigations on the stability of antimony in several natural samples spiked with Sb(III) and Sb(V) indicated instability of Sb(III) in tap water and satisfactory stability of inorganic Sb species in the presence of urine matrix.  相似文献   

11.
Cellulose/antimony(III) oxide composites, Cel/Sb(2)O(3), with oxide loadings of 1.7, 5.4, and 9.2 wt% were prepared by reacting the precursor SbCl(3) reagent with cellulose in dry ethanol solution. The reaction of the Lewis acid and the cellulose fibers occurred at the~amorphous domains of the biopolymer, increasing the crystallinity degree of the composite compared with that of the untreated cellulose. The scanning electron microscopy images and metal mapping for all samples showed that the oxide film layer uniformly covered the fiber surfaces with no detectable agglomerates of the oxide particles. The synchrotron X-ray diffraction patterns indicated that the antimony oxide film was obtained as a crystalline phase with orthorombic structure. The atomic ratios of O/Sb, determined by X-ray photoelectron spectroscopy, indicated that, for Cel/Sb(2)O(3) samples with 9.3 wt% loading, the fiber surface is nearly saturated by the oxide layer. The thermal stability of Cel/Sb(2)O(3) compared to that of untreated cellulose is practically unaffected. Copyright 2000 Academic Press.  相似文献   

12.
The selective retention of the Sb(III) chelate with ammonium pyrrolidine dithiocarbamate (APDC) on a column of Chromosorb 102 resin from a buffered sample solution including Sb(V) was used for the determination of Sb(III). The retained antimony was eluted with acetone. The retention of the Sb(III)-iodide compounds with sodium iodide on the Chromosorb 102 resin column from the same solution after reducing Sb(V) to Sb(III) by iodide in acidic solution was used to preconcentrate the total antimony. The retained antimony was eluted with 0.25 mol l(-1) HNO3. The antimony in the effluent was determined by flame atomic-absorption spectrometry. Also, the total antimony was determined directly by graphite-furnace atomic absorption spectrometry. The Sb(V) concentration could be calculated by the difference. The recoveries were > or = 95%. The detection limits of a combination of the column procedure and flame AAS for antimony were 6 - 61 microg l(-1) and comparable to 4 microg l(-1) for a direct GFAAS measurement. The relative standard deviations were <6%. The procedure was applied to the determination of Sb(III) and Sb(V) in spiked tap water, waste-water samples and a certified copper metal with the satisfactory results.  相似文献   

13.
A new analytical procedure for the speciation of antimony in liver tissues is presented here. For this purpose, a flow injection system has been developed for the treatment of samples and the determination of antimony by hydride generation - atomic absorption spectrometry. The method involves the sequential and the on-line extraction of antimony(III) and antimony(V) from solid lyophilized blood and hamsters liver tissues, with 1.5 mol l(-1) acetic acid and 0.5 mol l(-1) sulfuric acid for Sb(III) and Sb(V), respectively. Reduction of Sb(V) to Sb(III) for stibine generation is effected by the on-line pre-reduction with l-cysteine. The linear ranges were 2.5-20 and 1.0-25 mug l(-1) of Sb(III) and Sb(V), respectively. The detection limits (3sigma) were 1.0 mug l(-1) for Sb(III) and 0.5 mug l(-1) for Sb(V). The relative standard deviation values for fifteen independent measurements were 2.1 and 1.8% for Sb(III) and Sb(V), respectively. The recovery studies performed with samples of cattle liver provided results from 98 to 100% for Sb(III) and from 100 to 103% for Sb(V) for samples spiked with single species. For samples spiked with both Sb(III) and Sb(V), the recovery varied from 97 to 103% for Sb(III) and from 101 to 103% for Sb(V).  相似文献   

14.
The effect of antimony doping of tin dioxide at Sb/Sn = 0.2–2.5 on the physical properties and structure of air-dry samples of hydrous tin dioxide, SnO2 ? nH2O (HTD), was studied by IR and Raman spectroscopy, powder X-ray diffraction, impedance measurements, TGA, and electron microscopy. The doped materials retained the structure of undoped HTD materials if the Sb/Sn ratio did not exceed the threshold value of 1.0. When Sb/Sn > 1, crystalline antimony oxide admixture appeared. The data of IR spectroscopy attested to the presence of two types of water in HTD-Sb, namely, physisorbed and chemisorbed water. The major part of water of the former type can be removed by evacuation at room temperature. Chemisorption occurs upon coordination of water molecules by metal ions through the formation of metal–oxygen bonds. Water molecules of the latter type are retained in evacuated samples at room temperature and on heating above the boiling point of liquid water. By impedance spectroscopy, HTD-Sb samples were shown to possess fairly high proton conductivity at high humidity; however, the conductivity decreased by two orders of magnitude after partial removal of water molecules of the former type. This attests to the destruction of the loosely bound hydrogen bond network, across which proton transfer takes place. It was also found that under conditions of constant humidity, the proton conductivity successively decreases with increasing antimony concentration. This is attributable to the fact that Sb(III) ions polarize the local environment to a lesser extent than Sn(IV) ions.  相似文献   

15.
A simple, rapid and selective electrochemical method is proposed as a novel and powerful analytical technique for the solid phase determination of less than 4% antimony in lead-antimony alloys without any separation and chemical pretreatment. The proposed method is based on the surface antimony oxidation of Pb/Sb alloy to Sb(III) at the thin oxide layer of PbSO4/PbO that is formed by oxidation of Pb and using linear sweep voltammetric (LSV) technique. Determination was carried out in concentrate H2SO4 solution. The influence of reagent concentration and variable parameters was studied. Antimony of Pb/Sb alloys can be determined in the range of 0.0056–4.00% with a detection limit of 0.0045% and maximum relative standard deviation of 4.26%. This method was applied for the determination of Sb in lead/acid battery grids satisfactory.  相似文献   

16.
Solidified floating organic drop microextraction was applied as a separation/preconcentration step prior to the electrothermal atomic absorption spectrometric (ETAAS) determination of ultra trace of antimony species. The method was based on the formation of an extractable complex between Sb(III) and ammonium pyrrolidinedithiocarbamate at pH ~ 5, while Sb(V) was remained in the aqueous phase. The antimony extracted into 1-undecanol was determined by ETAAS. Total antimony was determined after the reduction of Sb(V) to Sb(III) with potassium iodide and ascorbic acid. The amount of Sb(V) was determined from the difference of concentration of total antimony and Sb(III). Under the optimum conditions an enhancement factor of 437.5 and a detection limit of 5.0 ng L?1for the preconcentration of 25 mL of sample was achieved. The relative standard deviation at 300 ng L?1 of antimony was found to be 3.5 % (n = 6). The proposed method was successfully applied to the determination of antimony in tea, basil and natural water samples.  相似文献   

17.
建立了双道氢化物发生-原子荧光光谱法同时测定核电用钢中痕量砷和锑的新方法。用王水溶解样品,以2.0 g/L L-半胱氨酸溶液作为预还原剂,在低酸度条件下实现对砷、锑的预还原。用20 g/L硼氢化钾溶液作为还原剂,氢化物发生反应在0.5 mol/L乙酸介质中进行。砷、锑的质量浓度在40μg/L范围与相应的荧光强度呈线性关系,方法的检出限(3s/k)分别为0.032μg/L和0.022μg/L。应用此方法同时测定了核电用钢及不锈钢标准样品中的砷锑含量,并与电感耦合等离子体原子发射光谱法的分析结果作了对比,测定值与标准样品的标准值相符,结果的相对标准偏差(n=8)均小于5.0%。  相似文献   

18.
An analytical method for the separation and quantification of Sb(III) and Sb(V) using anion chromatography with ICP-MS is presented. The optimum conditions for the separation of the antimony species were established with 15 mmol/L nitric acid at pH 6 as eluent system on a PRP-X100 column. The retention times for antimony(V) and antimony(III) were 85 s and 300 s with detection limits of 0.06 microg/L and 0.29 microg/L, respectively. The proposed method was applied to cell extracts of Leishmania donovani, which were incubated with antimony(III) and antimony(V). Some metabolism seemed to occur within the cells.  相似文献   

19.
A comparative study was made of several methods to speciale Sb(III) and Sb(V) by AAS: 1) Selective extraction of Sb(III) with lactic acid/malachite green graphite furnace-AAS, 2) Sb(III) and total antimony determination by hydride generation-AAS coupled to flow injection, batch, and continuous flow systems. These methods were applied to determine total antimony and Sb(III) in sea and surface water and total antimony in sediments and in soil. For soils different sample pretreatments were used: HNO3-H2SO4-HC1O4, HF-HNO3-H2SO4-HC1O4, cold aqua regia and slurry formation procedures in water and 4M HC1. In each case the recovery of total antimony and the ability to selective determine Sb(III) were studied. The detection limits obtained were 0.01 ng, 0.07 ng, 2.97 ng and 0.21 ppb for GF-AAS, FIA-HG-AAS, HG (Batch)-AAS, and HG (continuous flow)-AAS, respectively.  相似文献   

20.
The bioaccumulation and excretion of antimony by the freshwater alga Chlorella vulgaris , which had been isolated from an arsenic-polluted environment, are described. When this alga was cultured in a medium containing 50 μg cm−3 of antimony(III) for 14 days, it was found that Chlorella vulgaris bioaccumulated antimony at concentrations up to 12 000 μg Sb g−1 dry wt after six days' incubation. The antimony concentration in Chlorella vulgaris decreased from 2570 to 1610 μg Sb g−1 dry wt after the cells were transferred to an antimony-free medium. We found that the excreted antimony consists of 40% antimony(V) and 60% antimony(III). This means that the highly toxic antimony(III) was converted to the less toxic antimony (V) by the living organism. Antimony accumulated in living Chlorella vulgaris cells was solvent-fractionated with chloroform/methanol (2:1), and the extract residue was fractionated with 1% sodium dodecyl sulfate (SDS). Gel-filtration chromatography of the solubilized part showed that antimony was combined with proteins whose molecular weight was around 4×104 in the antimony-accumulated living cells. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号