首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
A series of poly(itaconate ester)s containing methyl-terminated poly(ethylene oxide) side chains with lengths ranging from 1 to 5 ethylene oxide units has been synthesized. Both heat capacity Cp and dynamic mechanical measurements have been carried out on these polymers using differential scanning calorimetry (DSC) and torsional braid analysis (TBA), respectively. The resulting data for this polymer series are discussed, and comparisons are made with work previously published for the corresponding di-n-alkyl itaconate ester polymers where appropriate.  相似文献   

2.
Polymer monolayers spread at the air/water interface were obtained for: poly(monooctyl itaconate) (PMOI), poly(monodecyl itaconate) (PMDI), poly(monododecyl itaconate) (PMDoI), poly(monobenzyl itaconate) (PMBzI), poly(methyldodecyl itaconate) (PMeDoI) and the alternating copolymer (monooctyl itaconate-alt-maleic anhydride) (MOI-alt-MA). By monolayer compression at constant temperature, the respective Langmuir isotherms for these polymers were obtained. For all polymers the zero-pressure limiting area per repeating unit (ru) Ao, and the collapse pressure πc were determined. At low surface polymer concentrations, the monolayers characterization was carried out according to the surface pressure expressed as a function of the surface concentration. The behavior observed was described by the virial expansion development. At the semidilute region, the surface pressure variation was expressed in terms of the scaling laws as a power function of the surface concentration.  相似文献   

3.
New poly(1,3,4-oxadiazole-imide)s containing dimethylsilane units have been prepared by solution polycondensation reaction of an aromatic dianhydride incorporating dimethylsilane group, namely bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride, with different aromatic diamines having preformed 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2,5-bis[p-(3-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-fluorophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole, and 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. The polymers were easily soluble in polar organic solvents, such as N-methylpyrrolidinone, N,N-dimethylformamide, and pyridine, as well as in less polar organic solvents, such as tetrahydrofuran and chloroform. Very thin coatings deposited on silicon wafers exhibited smooth, pinhole-free surface in atomic force microscopy investigations. The polymers showed high thermal stability with decomposition temperature being above 415 °C.They exhibited a glass transition in the temperature range of 202-282 °C, with reasonable interval between glass transition and decomposition temperature. Solutions of the polymers in N,N-dimethylformamide exhibited fluorescence, having maximum emission wavelength in the range of 353-428 nm.  相似文献   

4.
The three o-, m- and p- isomers of ditoluyl itaconate were obtained by esterification of cresols and itaconic acid in the presence of diphosphorous pentoxide, and then polymerized in bulk with AlBN as initiator. The polymers were investigated in dilute solution, including MW determination and precipitation fractionations, and the results compared with those for poly(diphenyl itaconate). The presence and position of -CH, in the aromatic ring influence the initial rates of polymerization, polymer solubilities in organic solvents and [η]/MW relations. Unperturbed dimensions, obtained by extrapolating to τ-conditions, vary slightly with the -CH, group position, due to steric and probably other effects.  相似文献   

5.
The presence of a main‐chain correlation distance (dII) in the poly(di‐n‐alkyl itaconate)s was confirmed with small‐angle X‐ray scattering/wide‐angle X‐ray scattering measurements taken over the temperature range of 293–478 K. Data for a series of alkyl acrylate polymers were also obtained for comparison. The intensity of the itaconate dII peak was significant and indicated a greater level of nanophase formation than in analogous systems. In the lower members of the series, nanophase formation appeared to be further enhanced in the temperature range above the glass‐transition temperature (Tg). This was ascribed to the rapidly increasing main‐chain mobility in this region. Macroscopically phase‐separated itaconate blends displayed the individual dII nanospacings of each homopolymer component. Copolymers, on the other hand, showed more interesting behavior. Poly(methyl‐co‐di‐n‐butyl itaconate) followed an average behavior in which the dII spacing and Tg changed progressively with the comonomer content. In contrast, the side‐chain pairing in poly(methyl‐co‐di‐n‐octyl itaconate) generated dII spacings characteristic of separate methyl and octyl nanodomains. The observation of the dioctyl nanodomains, along with the dioctyl side‐chain lower Tg relaxation event, confirmed the concept of independent side‐chain‐domain relaxation in these polymers. The temperature behavior of the poly(methyl‐co‐di‐n‐octyl itaconate) small‐angle X‐ray scattering profiles and scattering correlation lengths indicated that the two nanodomains were not completely structurally independent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4000–4016, 2004  相似文献   

6.
The effect of γ irradiation on a series of vinyl polymers, which included polymethacrylonitrile, poly(α-chloroacrylonitrile), poly(dimethyl itaconate), poly(acrylic anhydride), and poly(methacrylic anhydride), was studied as part of a program to develop improved positive lithographic resists. Radiation-induced degradation was observed for polymethacrylonitrile, poly(α-chloroacrylonitrile), and poly(methacrylic anhydride). Molecular weight degradation as a function of dose was monitored by membrane osmometry or GPC techniques. For γ-irradiated poly(dimethyl itaconate) and poly(acrylic anhydride) crosslinking was found to predominate over chain scission. [G(s)–G(x)] values, calculated from molecular weight inverse versus dose curves, indicate that both nitrile polymers degraded more efficiently than a poly(methyl methacrylate) reference standard on the basis of M n changes. The radiation behavior of the first three polymers confirms earlier findings than vinyl polymers with quaternary carbons predominantly degrade when subjected to ionizing radiation.  相似文献   

7.
Two series of novel amorphous poly(aryl ether phthalazine)s have been prepared via an intramolecular ring closure reaction of poly(aryl ether ketone)s (PAEKs) with hydrazine monohydrate. Fluorinated PAEKs, which display solubility in solvents incorporating a ketone functionality such as acetone or ethyl acetate, were converted to poly(aryl ether phthalazine)s to observe if these polymers would display similar solubility characteristics. The poly(aryl ether phthalazine)s have glass transition temperatures in the range of 278–320°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. The fluorinated poly(aryl ether phthalazine)s were not soluble in ketonic solvents. A series of poly(aryl ether phthalazine)s incorporating pendant 2-naphthalenyl moieties has been prepared in an attempt to produce amorphous, thermally stable polymers with high glass transition temperatures. The polymers have glass transition temperatures in the range of 287–334°C and show 5% weight loss points greater than 500°C in air and nitrogen atmospheres. Poly(aryl ether phthalazine)s undergo an exothermic reaction above the glass transition temperature. The major product of this reaction is a rearrangement of the phthalazine moieties to quiazoline moieties, however some crosslinking of the polymers occurs. Cured samples of the poly(aryl ether phthalazine)s show a small increase in the polymer Tg and are insoluble in all solvents tested. © 1996 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 34:1897–1905, 1996  相似文献   

8.
A series of new methyl substituted poly(ether-amide)s were synthesized by using direct Yamazaki’s phosphorylative polycondensation of novel diacid 1,1-bis[4-(4-carboxymethyl phenoxy)-3-methylphenyl] cyclopentane (BCMMP) with various aromatic diamines. These polymers were characterized by FTIR spectroscopy. Inherent viscosities of these polymers were in the range 0.25 to 0.42 dL/g indicating moderate molecular weight built-up. These polymers exhibited excellent solubility in various polar aprotic solvents such as NMP, DMSO, DMAc, DMF, pyridine, and were insoluble in THF, DCM and chloroform. X-Ray diffraction pattern of polymers showed that incorporation of methyl substituent on aromatic backbone and cardo cyclopentylidene moiety containing ether linkage and methylene spacer would disturb the chain regularity and packing, leading to amorphous nature. Thermal analysis by TGA showed excellent thermal stability of polymers. The glass transition temperature Tg were in the range 195–210°C. The structure-property correlation among this poly(ether-amide)s was studied, in view of these polymer’s potential applications as high performance polymers.  相似文献   

9.
Molecular weight distribution and long chain branching were taken into account for the glass transition temperature (Tg)-molecular weight (M) relationships for bisphenol-A polycarbonate. A new form of the four-variable equation for Tg is proposed for polydisperse branched polymers. The extended equations were compared with the experimental results on Tg and M averages; they were also applied for characterization of branched polymer by the combined GPC/V and DSC methods.  相似文献   

10.
A series of poly(itaconic acid ester)s with pendant cycloalkyl rings, ranging in size from cyclopropyl to cyclododecyl, have been prepared. Two distinct groups have been synthesized; Group I derivatives have the ring attached directly to the main chain through an oxycarbonyl group and Group II polymers have a methylene unit inserted between the ring and the oxycarbonyl group. The glass transition temperatures, Tg, have been measured for polymers in each group. In Group I, Tg increased with ring size up to the dicyclohexyl derivative, but it then decreased with further increase in ring size. The decrease in Tg is due to the inherent flexibility of the ring which leads to internal plasticization of the sample. This effect appears to predominate over ring size in determining the magnitude of Tg, for 7–12 membered rings. Similar trends have been found in the Group II polymers, but the effect of the ring becomes less important the further it is moved away from the chain backbone.  相似文献   

11.
Poly(1,3,4-oxadiazole-ether-imide)s were prepared by thermal imidization of poly(amic-acid) intermediates resulting from the solution polycondensation reaction of a bis(ether-anhydride), namely 2,2′-bis-[(3,4-dicarboxyphenoxy)phenyl]-1,4-phenylenediisopropylidene dianhydride, with different aromatic diamines containing 1,3,4-oxadiazole ring, such as 2,5-bis(p-aminophenyl)-1,3,4-oxadiazole, 2,5-bis[p-(4-aminophenoxy)phenyl]-1,3,4-oxadiazole, 2-(4-dimethylaminophenyl)-5-(3,5-diaminophenyl)-1,3,4-oxadiazole. Poly(1,3,4-oxadiazole-ether-imide)-polydimethylsiloxane copolymers were prepared by polycondensation reaction of the same bis(ether-anhydride) with equimolar quantities of an aromatic diamine having 1,3,4-oxadiazole ring and a bis(aminopropyl)polydimethylsiloxane oligomer of controlled molecular weight. A solution imidization procedure was used to convert quantitatively the poly(amic-acid) intermediates to the corresponding polyimides. All the polymers were easily soluble in polar organic solvents such as N-methylpyrrolidone and N,N-dimethylacetamide. The polymers showed good thermal stability with decomposition temperature being above 400 °C. Solutions of some polymers in N-methylpyrrolidone exhibited blue fluorescence, having maximum emission wavelength in the range of 370-412 nm.  相似文献   

12.
A series of novel fluorinated poly(ether imide)s (IV) having inherent viscosities of 0.70-1.08 dL/g were prepared from 1,1-bis[4-(3,4-dicarboxyphenoxy)phenyl]cyclohexane dianhydride (I) and various trifluoromethyl (CF3)-substituted aromatic bis(ether amine)s IIa-g by a standard two-step process with thermal and chemical imidization of poly(amic acid) precursors. These poly(ether imide)s showed excellent solubility in many organic solvents and could be solution-cast into transparent, flexible, and tough films. These films were essentially colorless, with an ultraviolet-visible absorption edge of 375-380 nm and a very low b value (a yellowness index) of 5.5-7.3. They also showed good thermal stability with glass-transition temperatures of 207-269 °C, 10% weight loss temperatures in excess of 474 °C, and char yields at 800 °C in nitrogen more than 62%. In comparison with analogous V series poly(ether imide)s without the -CF3 substituents, the IV series polymers showed better solubility, lower color intensity, and lower dielectric constants.  相似文献   

13.
The thermal degradation behaviour of two poly(4-ω-chloroalkyl-α-acetoxystyrene)s has been studied by means of dynamic and isothermal thermogravimetric analysis and gas chromatography-mass spectroscopy. The results show that two reactions occur during the first stage of the process. An elimination reaction gives acetic acid as major volatile species and a residue formed of para-substituted polyphenylacetylenes. A depolymerization reaction gives principally the para-substituted acetophenone corresponding to the starting monomer, and explains the low molecular weights of the residues. These two reactions are simultaneous in the case of poly(4-chloromethyl-α-acetoxystyrene), but are distinguishable in the case of poly(4-3-chloropropyl-α-acetoxystyrene). Kinetic parameters of the overall decomposition of these two polymers have been calculated and compared with those of poly(4-2-chloroethyl-α-acetoxystyrene).  相似文献   

14.
A series of polyamides and poly(amide-imide)s were prepared by the direct poly-condensation of 2,2-bis(4-aminophenoxy) benzonitrile [4-APBN] with aromatic dicarboxylic acids and bis(carboxyphthalimide)s in N-methyl-2-pyrrolidone [NMP] with triphenyl phosphite and pyridine as condensing agents. The synthesis of 4-APBN involves a nucleophilic displacement reaction in dipolar aprotic solvent with the alkali metal salt of p-aminophenol and an activated aromatic dichloro compound. Bis(carboxyphthalimide)s were prepared by condensation of 4,4-diaminodiphenylsulfone, 3,3-diaminodiphenylsulfone, 4,4-diaminodiphenylether, 4,4-diaminodiphenylmethane, 3,3-diaminobenzophenone, and trimellitic anhydride at a 1:2 molar ratio. The inherent viscosities of the resulting polymers were found to be in the range of 0.31-0.93 dl/g and glass transition temperatures between 235 and 298 °C. All polymers were soluble in aprotic polar solvents such as dimethylsulfoxide and NMP. The results of thermogravimetry revealed that all the polymers showed no significant weight loss before 400 °C. Wide-angle X-ray diffractograms revealed that all polymers were found to be amorphous except for the polyamide derived from isophthalic acid and polyamide-imides derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s.  相似文献   

15.
A series of new high molecular weight poly(arylene ether)s containing the 1,2-dihydro-4-phenyl(2H)phthalazinone moiety have been synthesized. The inherent viscosities of these polymers are in the range of 0.33–0.64 dL/g. They are amorphous and readily soluble in chloroform, DMF, and DMAc. The glass transition temperatures of the polymers range from 241 to 320°C and the 5% weight loss temperatures in nitrogen atmosphere range from 473 to 517°C. The hydroxy group in the monomer 1,2-dihydro-4-(4-hydroxyphenyl)(2H)phthalazin-1-one has been selectively transformed into the N,N′-dimethylthiocarbamate group, which was then rearranged to give the S-(N,N′-dimethylcarbamate) group via the Newman–Kwart rearrangement reaction. A series of poly(arylene thioether)s containing the 1,2-dihydro-4-phenyl(2H)phthalazinone moiety have also been synthesized via two types of reactions, a N C coupling reaction and a one-pot reaction between the S-(N,N′-dimethylcarbamate) and activated dihalo compounds, in diphenyl sulfone in the presence of a cesium carbonate and calcium carbonate mixture. These poly(arylene thioether)s also have high glass transition temperatures (ranging from 217–303°C) and high thermal stabilities. Compared with their poly(ether) analogs, the poly(arylene thioether)s have glass transition temperatures several degrees lower, which is attributed to the more flexible C S C bonds. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36 : 455–460, 1998  相似文献   

16.
Three novel series of soluble and curable phthalonitrile-terminated oligomeric poly(ether imide)s containing phthalazinone moiety were synthesized from an excess amount of three dianhydrides and phthalazinone-based diamine, followed by reacting with 4-(3-aminophenoxy)phthalonitrile (APPh) in a two-step, one-pot reaction, respectively. The phthalonitrile oligomers containing phthalazinone moiety were cured in the presence of 4,4′-diaminodiphenylsulfone (DDS). The oligomers and the crosslinked polymers were characterized by DSC, FT-IR and elemental analysis. These phthalonitrile oligomers containing phthalazinone groups were found to be soluble in some aprotic solvents, such as chloroform, pyridine, m-cresol and N-methyl-2-pyrrolidone (NMP). The crosslinked polymers were insoluble in all solvents. The thermal properties of the oligomers and the crosslinked polymers were evaluated using DSC and TGA analysis. The phthalonitrile oligomers showed high glass transition temperatures (Tgs) in the range of 214-256 °C and high decomposition temperatures with 10% weight loss (Td10%) ranging from 523 to 553 °C. The crosslinked polymers showed excellent thermal stability with the 10% weight loss temperatures ranging from 543 to 595 °C, but did not exhibit a glass transition temperature upon heating to 350 °C.  相似文献   

17.
Abstract

A series of aliphatic polybenzoxazoles of high molecular weights was prepared in three steps by the low-temperature solution polycondensation of tetrakis(trimethylsilyl)-substituted 4,4′-diamino-3,3′-dihydroxy-biphenyl with aliphatic diacid chlorides with 7 to 12 methylene units yielding trimethylsilyl-substituted poly(o-hydroxysamide) precursor polymers, which were subjected to desilylation with methanol giving the poly(o-hydroxyamide)s, followed by thermal cyclodehydration. The aliphatic polybenzoxazoles had melting points in the 172 to 246 °C range with glass transition temperatures of 55-97°C. They were stable in the melt state up to 400 °C in nitrogen. These polybenzoxazoles and the corresponding bisbenzoxazole model compounds exhibited no liquid crystallinity.  相似文献   

18.
Two new aromatic diamines containing preformed amide linkages, viz., N,N′-(4-pentadecyl-1,3-phenylene)bis(4-aminobenzamide) I and N,N′-(4-pentadecyl-1,3-phenylene)bis(3-aminobenzamide) II, were synthesized by reaction of 4-pentadecylbenzene-1,3-diamine with 4-nitrobenzoylchloride and 3-nitrobenzoylchloride, followed by reduction of the respective dinitro derivatives. A series of new poly(amideimide)s was synthesized by polycondensation of I and II with four commercially available aromatic dianhydrides, viz., pyromellitic dianhydride (PMDA), 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (ODPA), and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) in N,N-dimethylacetamide (DMAc) employing conventional two step method via poly(amic acid) intermediate followed by thermal imidization. Reference poly(amideimide)s were synthesized by polycondensation of N,N′-(1,3-phenylene)bis(4-aminobenzamide) and N,N′-(1,3-phenylene)bis(3-aminobenzamide) with the same aromatic dianhydrides. Inherent viscosities of poly(amideimide)s containing pendent pentadecyl chains were in the range 0.37-1.23 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C indicating the formation of medium to high molecular weight polymers. The poly(amideimide)s containing pendent pentadecyl chains were found to be soluble in N,N-dimethylacetamide, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and pyridine and could be cast into transparent, flexible and tough films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-ray diffractograms also displayed sharp reflection in the small angle region (2θ ≈ 3°) for poly(amideimide)s containing pentadecyl chains indicating the formation of layered structure arising from packing of flexible pentadecyl chains. The glass transition temperatures observed for reference poly(amideimide)s were in the range 331-275 °C and those for poly(amideimide)s containing pendent pentadecyl chains were in the range 185-286 °C indicating a large drop in Tg owing to the “internal plasticization” effect of pentadecyl chains. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, were in the range 460-480 °C indicating their good thermal stability.  相似文献   

19.
The synthesis of poly(di-2-chloroethyl itaconate) (PD2CEI) and poly(di-3-chloropropyl itaconate) (PD3CPI) was carried out. The dilute solution behaviour of these polymers in tetrahydrofuran and chloroform at 298 K has been studied, by viscometry, membrane osmometry, and size-exclusion chromatography (SEC) measurements. The Kuhn-Mark-Houwink-Sakurada relationships were established. The flexibility factors σ and C and the thermodynamic parameters B were calculated using the Stockmayer-Fixman equation. The results obtained are compared with those found for the corresponding poly(methacrylates) and the poly(dialkyl itaconates), and discussed in terms of specific influence of the chlorine incorporated in the side chain.  相似文献   

20.
A series of novel bis(phenoxy)phthalimidine-containing poly(amide-imide)s III were synthesized by the direct polycondensation of 3,3-bis[4-(4-aminophenoxy)phenyl]phthalimidine (BAPP) with various aromatic bis(trimellitimide)s in N-methyl-2-pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. Poly(amide-imide)s III , having inherent viscosities up to 1.36 dL/g, were obtained in quantitative yields. All resulting polymers showed an amorphous nature and were readily soluble in polar solvents such as NMP and N,N-dimethylacetamide. All the soluble poly(amide-imide)s afforded transparent, flexible, and tough films. The glass transition temperatures of these polymers were in the range of 267–322°C and the 10% weight loss temperatures were above 490°C in nitrogen. Some properties of poly(amide-imide)s III were compared with those of the corresponding isomeric poly(amide-imide)s III′ prepared from 3,3-[4-(4-trimellitimidophenoxy)phenyl]-phthalimidine and various aromatic diamines. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号