首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a theoretical investigation of high-order harmonic generation in a chirped two-color laser field, which is synthesized by a 10-fs/800-nm fundamental chirped pulse and a 10-fs/1760-nm subharmonic pulse. It is shown that a supercontinuum can be produced using the multicycle two-color chirped field. However, the supercontinuum reveals a strong modulation structure, which is not good for the generation of an isolated attosecond pulse. By adding a static electric field to the multicycle two-color chirped field, not only the harmonic cutoff is extended remarkably, but also the quantum paths of the high-order harmonic generation (HHG) are modified significantly. As a result, both the extension of the supercontinuum and the selection of a single quantum path are achieved, producing an isolated 23-as pulse with a bandwidth of about 170.6 eV. Furthermore, the influences of the laser intensities on the supercontinuum and isolated attosecond pulse generation are investigated.  相似文献   

2.
The angular distribution of CH3I is investigated experimentally using a single Fourier transform-limited laser pulse and a pulse train, where a 90-fs 800-nm linearly polarized laser field with a moderate intensity of 2.8×1013 W/cm2 is used. The dynamic alignment is demonstrated in a single pulse experiment. Moreover, a pulse train is used to optimize the molecular alignment, and the alignment degree is almost identical to that with the single pulse. The results are analysed by using chirped femtosecond laser pulses, and it demonstrates that the structure of pulse train rather than its effective duration is crucial to the molecular alignment.  相似文献   

3.
A new scheme for stabilizing the carrier-envelope (CE) phase of a few-cycle laser pulse train is demonstrated. Self-phase modulation and difference-frequency generation in a single periodically poled lithium niobate crystal that transmits the main laser beam allows CE phase locking directly in the usable output. The monolithic scheme obviates the need for splitting off a fraction of the laser output for CE phase control, coupling into microstructured fiber, and separation and recombination of spectral components. As a consequence, the output yields 6-fs, 800-nm pulses with an unprecedented degree of short- and long-term reproducibility of the electric field waveform.  相似文献   

4.
We demonstrate a new technique for femtosecond-pulse generation that employs ultrafast modulation of a laser field phase by impulsively excited molecular rotational or vibrational motion with subsequent temporal compression. An ultrashort pump pulse at 800 nm performs impulsive excitation of a molecular gas in a hollow waveguide, and a weak delayed probe pulse at 400 nm is scattered on the temporal oscillations of its dielectric index. The resultant sinusoidal phase modulation of the probe pulse permits probe pulse temporal compression by use of both positively and negatively dispersive elements. The potential of this new method is demonstrated by the generation of a periodic train of 5.8-fs pulses at 400 nm with positive group-delay dispersion compensation.  相似文献   

5.
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse.Both classical theory and the quantum wavelet transform method are used to understand the physics of harmonics.By adjusting the carrier envelope phase of the fundamental field,the intensities of harmonic spectra increase and the harmonics in the plateau become regular.Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics,and with phase compensation an isolated attosecond pulse less than 30 as can be generated.  相似文献   

6.
贺海翔  郭雅慧  何国钟 《中国物理 B》2012,21(8):80202-080202
We investigate high-order harmonic generations by controlling various quantum paths of harmonics in an infrared laser field which combines a low-frequency pulse. Both classical theory and quantum wavelet transform method are used to understand the physics of harmonics. By adjusting the carrier envelope phase of the fundamental field, the intensities of harmonic spectra increase and the harmonics in the plateau become regular. Attosecond pulses each with a duration of 58 as are obtained directly by compressing the harmonics, and with phase compensation an isolated attosecond pulse less than 30 as can be generated.  相似文献   

7.
Four-wave mixing (FWM) of femtosecond near-infrared laser pulses and its second harmonic in the filamentation regime is shown to give rise to ultrashort field waveforms in the mid-infrared with pulse widths as short as a half of the field cycle and produce ultrabroadband supercontinuum spectra stretching from the mid-IR to the terahertz region. Generation of 7-fs pulses centered at 4.35 μm is demonstrated by a two-color filamentation experiment, where the 25-fs, 800-nm fundamental-wavelength output of a Ti: Sapphire laser is mixed with its second harmonic. The spectral and temporal properties of the mid-IR waveforms, as well as their emission pattern, are consistent with the FWM scenario of frequency conversion generalized to include the Kerr effect and ionization-induced refractive-index modulation.  相似文献   

8.
The frequency dependence of the group delay of both a pulse stretcher and a stretcher–compressor system of a chirped pulse amplification laser is determined with a two-dimensional extension of a spectral interferometric method called the stationary phase point method. The 800-nm, 15-fs probe pulse from a Ti:S oscillator propagates through the stretcher or the stretcher–compressor system. The reference pulse is one of the subsequent oscillator pulses but passes the system and interferes with the probe pulse; hence, a Mach–Zehnder-type interferometer is formed. The shape of the spectrally resolved interference fringes is peculiar to the amount and sign of the relative dispersion properties of the pulses. Group-delay dispersion is obtained from the observation of the position of the stationary phase point in spectrally resolved interferograms at different time delays. This simple method allows for an almost complete and fast alignment of the stretcher–compressor system from scratch until the final adjustments. PACS 42.65.Re  相似文献   

9.
We demonstrate that multiphoton-induced photoelectron emission from a gold surface caused by low-energy (unamplified) 4-fs, 750-nm laser pulses is sensitive to the timing of electric field oscillations with respect to the pulse peak. This observation confirms recent theoretical predictions and opens the door to measuring the absolute value of the carrier-envelope phase difference of few-cycle light pulses with a solid-state detector.  相似文献   

10.
We present a systematic study for generation of intense and short single as pulse in pre-excited He-ionic medium with the use of a same-frequency laser field synthesis. By preparing He+ ions in a coherent superposition of the ground and excited states, a depth of spectral modulation efficiently decreases and the efficiency of harmonic plateau increases. By means of optimizing the laser parameters, the broadband XUV supercontinuum achieve by the superposition state scheme. It shows that by increasing the harmonic order of the supercontinuum, emission efficiency increases. The detailed view shows that the short-trajectory contributes to each supercontinuous harmonic and long-trajectory fully suppresses. Finally, by superposing some properly selected harmonics from optimal spectrum, an intense and almost transform-limited isolated 38-as pulse can be generated without phase compensation. A single isolated 5-as pulse can be achieved after phase compensation. These results are explained by using classical and quantum time-frequency analyses.  相似文献   

11.
We show that, in the case of sum-frequency mixing, one can alleviate group-velocity mismatch between IR and UV pulses by choosing different pulse widths, thus extending the interaction length of ultrashort pulses within nonlinear crystals. By fifth-harmonic generation with a Nd:glass laser, we demonstrate efficient frequency upconversion of 195-fs 264-nm pulses under the envelope of 0.9-ps 1055-nm pulses in beta-barium borate crystal, yielding <270-fs pulses with energy of up to 110muJ at 211 nm.  相似文献   

12.
In the present Letter, we theoretically discuss the optimum conditions for generating ultrashort attosecond pulse in three-color field with a model He exposed to the intense 5 fs, 800 nm fundamental field and the two weak control fields of 25 fs, 400 nm and 25 fs, 1600 nm. Through investigating the controlling factors in HHG spectra generation via manipulating the laser parameters of the three fields, we demonstrate that properly increasing the pulse intensity of 800 nm and 1600 nm fields at the same time with zero phase effects is an effective way to generate short attosecond pulses. Finally, an isolated pulse of 7 as is predicted by Fourier transforming an ultrabroad XUV continuum of 393 eV with phase compensation.  相似文献   

13.
We theoretically investigate high-order harmonic and attosecond pulse generation from helium atom in a three-color laser field, which is synthesized by 10 fs/800 nm Ti-sapphire laser and a two-color field consisting of 30 fs/532 nm and30 fs/1330 nm pulses. Compared with harmonic spectrum generated by a monochromatic field, the harmonics generated from the synthesized three-color field show a supercontinuum spectrum with a bandwidth of 235 eV, ranging from the 154 th to the 306 th order harmonic. This phenomenon can be attributed to the fact that the ionization of atoms as well as motion of ionized electron can be effectively controlled in the three-color field. Therefore, an isolated 46-as pulse can be generated by superposing supercontinuum from the 160 th to the 210 th order harmonics.  相似文献   

14.
陈高  杨玉军  郭福明 《物理学报》2013,62(7):73203-073203
通过数值求解一维含时薛定谔方程, 本文研究了具有特定波长的双色激光脉冲与氦原子相互作用产生的高次谐波和阿秒脉冲, 这里双色激光脉冲由5 fs较低强度基频钛宝石主脉冲与另一束较高强度的1330 nm 红外附加脉冲构成. 研究发现, 若两束脉冲之间的相对相位选择合适, 可以获得宽带连续辐射的高次谐波谱, 叠加该连续辐射谱可获得脉宽为38 as的孤立短脉冲. 进一步研究发现, 不同于以往孤立阿秒脉冲研究中选出长、短量子路径之一作为辐射源, 这里单阿秒脉冲来源于长、短两个量子路径的贡献, 只是这两个量子路径在很宽的谐波次数变化范围内辐射时刻比较集中. 关键词: 双色激光脉冲 阿秒脉冲 量子路径  相似文献   

15.
We propose a simple optical system to compensate for chromatic distortion that occurs during fan-out of femtosecond pulses by diffractive optics. The proposed system comprises a pair of diffractive elements, one for splitting an incoming pulse and the other for focusing the split pulses. With an appropriate separation between the elements, chromatic distortion resulting from the spectral bandwidth of a femtosecond pulse is removed, and an array of focused pulses with the same dimensions can be obtained. The theory has been verified through optical and processing experiments with 100-fs, 800-nm pulses.  相似文献   

16.
We show that the complete characterization of arbitrarily short isolated attosecond x-ray pulses can be achieved by applying spectral shearing interferometry to photoelectron wave packets. These wave packets are coherently produced through the photoionization of atoms by two time-delayed replicas of the x-ray pulse, and are shifted in energy with respect to each other by simultaneously applying a strong laser field. The x-ray pulse is reconstructed with the algorithm developed for optical pulses, which requires no knowledge of ionization physics. Using a 800-nm shearing field, x-ray pulses shorter than approximately 400 asec can be fully characterized.  相似文献   

17.
Formation and wandering of filaments in air are studied both experimentally and numerically. Filament-center deflections are collected from 1100 shots of 190-fs and 800-nm pulses in the plane perpendicular to the propagation direction. To calculate the filament wandering in air we have developed a model of powerful femtosecond laser pulse filamentation in the Kolmogorov atmospheric turbulence and employed the Monte Carlo method to model the propagation of several hundred laser pulses. Statistical processing of experimental and numerical data shows that filament-center displacements in the transverse plane obey the Rayleigh-distribution law. Parameters of the Rayleigh distribution obtained for numerical and experimental data are close to each other. Received: 23 May 2001 / Revised version: 26 September 2001 / Published online: 29 November 2001  相似文献   

18.
Linear Thomson scattering by a relativistic electron of a short pulse laser has been investigated by computer simulation. Under a laser field with a pulse of 33.3-fs full-width at half-maximum, and the initial energy of an electron of γ0=10, the motion of the electron is relativistic and generates an ultrashort radiation of 76-as with a photon wave length of 2.5-nm in the backward scattering. The radiation under a high relativistic energy electron has better characteristic than under a low relativistic energy electron in terms of the pulse width and the angular distribution.  相似文献   

19.
Uniform arrays of periodic nanoparticles with 80-nm period are formed on 6H-SiC crystal irradiated by circularly polarized 400-nm femtosecond laser pulses. In order to understand the formation mechanism, the morphology evolvement as a function of laser pulse energy and number is studied. Periodic nanoripples are also formed on the sample surface irradiated by linearly polarized 400-, 510- and 800-nm femtosecond laser pulses. All these results support well the mechanism that second-harmonic generation plays an important role in the formation of periodic nanostructures. PACS 79.20.Ds; 42.62.Cf; 61.80.Ba; 81.05.Cy; 78.30.Am  相似文献   

20.
We perform an experimental study on high-order harmonic generation (HHG) of aligned acetylene molecules induced by a 35-fs 800-nm strong laser field, by using a home-built HHG spectrometer. It is observed that the molecular HHG probability declines with increasing the laser ellipticity, which is in consistence with the deduction from the well-known tunneling-plus-rescattering scenario. By introducing a weak femtosecond laser pulse to nonadiabatically align the molecules, we investigated the molecular orbital effect on the HHG in both linearly and elliptically polarized driving laser fields. The results show that the harmonic intensity is maximum for the molecular axis aligned perpendicularly to the laser electric field. It indicates that both the highest occupied molecular orbitals (HOMO) and HOMO-1 contribute to the strong-field HHG of acetylene molecules. Our study should pave the way for understanding the interaction of molecules with ultrafast strong laser fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号