首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Negative ion tandem mass spectrometry (MS/MS) spectra of three isomeric triantennary N-linked glycans provided clear differentiation between the isomers and confirmed the occurrence of an isomer that was substituted with galactose on a bisecting GlcNAc (1 --> 4-substituted on the core mannose) residue recently reported by Takegawa et al. from N-glycans released from human immunoglobulin G (IgG). We extend this analysis of human serum IgG to reveal an analogue of the fucosylated triantennary glycan reported by Takegawa et al. together with a third compound that lacked both the sialic acid and the fucose residues. In addition, we demonstrate the biosynthesis of bisected hybrid-type glycans with the galactose modification, with and without core fucose, on the stem cell marker glycoprotein, 19A, expressed in a partially ricin-resistant human embryonic kidney cell line. It would appear, therefore, that this modification of N-linked glycans containing a galactosylated bisecting GlcNAc residue may be more common than originally thought. Negative ion MS/MS analysis of glycans is likely to prove an invaluable tool in the analysis and monitoring of therapeutic glycoproteins.  相似文献   

2.
N-linked glycans were released from chicken ovalbumin by hydrazinolysis and examined by matrix-assisted laser desorption/ionization mass spectrometry. Postsource decay analysis showed that most fragment ions arose as the result of internal glycosidic cleavages involving loss of nonreducing terminal residues from ions that had lost one or both GlcNAc residues from the chitobiose core [GlcNAcbeta(1 --> 4)GlcNAc]. Cross-ring fragments were abundant from the reducing-terminal GlcNAc but other cross-ring fragments were weak. The ion found to be most useful for determining the composition of the antennae attached to the 3- or 6-linked core mannose residues was an internal cleavage ion formed by loss of both the chitobiose core and the antenna linked to the 3-position of the core branching mannose. This ion was observed to lose water in the absence of a "bisecting" GlcNAc residue (beta1 --> 4 linked to the core mannose) and to lose a GlcNAc molecule (221 mass units) when a bisecting GlcNAc residue was present.  相似文献   

3.
The ionization and fragmentation behaviors of carbohydrate derivatives prepared by reaction with 2-aminobenzamide (AB), 1-phenyl-3-methyl-5-pyrazolone (PMP), and phenylhydrazine (PHN) were compared under identical mass spectrometric conditions. It has been shown that the intensities of signals in MS spectra depend on the kind of saccharides investigated and reducing end labels used. PMP sialyllactose, when ionized by ESI/MALDI, produced a mixture of [M + H]+, [M + Na]+, [M - H + 2Na]+ ions in the positive mode and [M - H]-, [M + Na - 2H]- ions in the negative mode. The AB and PHN derivatives formed abundant [M + H]+ and [M - H]- ions in ESI, and by matrix-assisted laser desorption/ionization (MALDI) produced abundant [M + Na]+ ions. PMP- and reduced AB-sialyllactose produced only Y-type fragment ions under both MS/MS sources. In the electrospray ionization (ESI)-MS/MS spectrum of PHN-sialyllactose, abundant ions corresponded to B, Z cleavages and in its MALDI-MS/MS spectrum, the abundant ions were consistent with Y glycosidic cleavages with the concurrence of B, C, and cross-ring fragment ions. In the MALDI-MS spectra of oligosaccharides acquired immediately after derivatization, it was possible to detect only PHN derivatives. After purification, spectra of all three types of derivatives showed high signal-to-noise ratios with the most abundant ions observed for AB reduced saccharides. [M + Na]+ ions were the dominant products and their fragmentation patterns were influenced by the type of the labeling and the kind of oligosaccharide considered. In the MALDI-PSD and -MS/MS spectra of AB-derivatized glycans, higher m/z fragment ions corresponded to B and Y cleavages and the loss of bisecting GlcNAc appeared as a weak signal or was not detected at all. Fragmentation patterns observed in the spectra of hybrid/complex PHN and PMP glycans were more comparable-higher m/z fragments corresponded to B and C glycosidic cleavages. For PHN glycans, the abundance of ions resulting from the loss of bisecting GlcNAc depended on the number of residues linked to the 6-positioned mannose. Also, PHN and PMP derivatives produced cross-ring cleavages with abundances higher than observed in the spectra of AB derivatized oligosaccharides. For high-mannose glycans, the most informative cleavages were provided by AB and PHN type of labeling. Here, PMP produced dominant Y-cleavages from the chitobiose while other ions produced weak signals.  相似文献   

4.
[M + NO3]- And [M + (NO3)2]2- ions were produced by electrospray from neutral high-mannose ([Man](5-9)[GlcNAc]2, [Glc](1-3)[Man](4-9)[GlcNAc]2) N-linked glycans and their 2-aminobenzamide derivatives sprayed from methanol:water containing ammonium nitrate. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. This behavior could be rationalized by an initial proton abstraction from various hydroxy groups by the initially-formed anionic adduct. These negative ion spectra were more informative than the corresponding positive ion spectra and contained prominent ions that were diagnostic of structural features such as the composition of individual antennas that were not easily obtainable by other means. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for many of the diagnostic ions.  相似文献   

5.
Electrospray ionization combined with ion trap mass spectrometry (ESI-ITMS) is a powerful tool for structural analysis of complex carbohydrates. Although its application to sulfated glycans has been limited so far, it should provide critical information, such as sulfate positions, on their structures. In this work, MS(n) spectra of nine monosulfated monosaccharides, consisting of five hexoses and four N-acetylhexosamines, were measured in negative ion mode to find basic fragmentation rules for sulfated sugars. Two pairs of positional isomers with respect to sulfation, i.e., Gal4S and Gal6S, and GalNAc4S and GalNAc6S, showed characteristic fragmentation patterns in MS(3), and could be discriminated from one another by the appearance of particular diagnostic fragment ions that characterize individual isomers. It was also demonstrated that, even if a mixture of these positional isomers was analyzed, the proportion of each species could be estimated through analysis of the abundance ratios of the diagnostic ions. However, 3-O-sulfated saccharides (Glc3S and GlcNAc3S) gave a single abundant diagnostic ion in MS(2) corresponding to the hydrogensulfate ion, [OSO(3)H](-), and this characteristic clearly differentiated them from their positional isomers. In contrast, 6-O-sulfated diastereomers consisting of two groups, Glc6S, Man6S, Gal6S, and GlcNAc6S, GalNAc6S, could not be discriminated by the types of fragment ions; however, the abundance ratios of particular fragment ions differed significantly between Glc(NAc)6S and Gal(NAc)6S. Since ESI-ITMS yielded large quantities of useful information on structures of monosulfated hexoses and N-acetylhexosamines in an extremely simple and reproducible manner, establishment of a comprehensive strategy based on ESI-ITMS(n) appears to be a promising technique for structural elucidation of sulfated complex carbohydrates.  相似文献   

6.
N-Linked glycans were ionized from several matrices with a Shimadzu-Biotech AXIMA-QIT matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer. [M+Na]+ ions were produced from all matrices and were accompanied by varying amounts of in-source fragmentation products. The least fragmentation was produced by 2,5-dihydroxybenzoic acid and the most by alpha-cyano-4-hydroxycinnamic acid and 6-aza-2-thiothymine. Sialic acid loss was extensive but could be prevented by formation of methyl esters. Fragmentation produced typical low-energy-type spectra dominated by ions formed by glycosidic cleavages. MS(n) spectra (n = 3 and 4) were used to probe the pathways leading to the major diagnostic ions. Thus, for example, an ion that was formed by loss of the core GlcNAc residues and the 3-antenna was confirmed as being formed by a B/Y rather than a C/Z mechanism. The proposed structures of several cross-ring cleavage ions were confirmed and it was shown that MS3 spectra could be obtained from as little as 10 fmol of glycan.  相似文献   

7.
QuEChERS前处理联合UPLC–MS/MS法检测花生中22种农药残留   总被引:1,自引:0,他引:1  
建立了Qu ECh ERS(Quick,Easy,Cheap,Effective,Rugged,Safe)前处理联合UPLC–MS/MS法检测花生中22种农药残留的方法。样品用10 m L乙腈提取,以多壁碳纳米管、N-丙基乙二胺为吸附剂,对2 m L提取液进行净化,净化液稀释至2倍体积,以MRM扫描方式、正负离子模式同时分析。22种农药在10,20,50μg/kg 3个添加水平下,平均回收率为70.6%~121.2%,相对标准偏差小于10%(n=6);多菌灵、抗蚜威、扑草净在0.05~10μg/L,啶虫脒、氟虫腈砜、苯醚甲环唑、哒螨灵、嘧霉胺、嘧菌酯在0.5~20μg/L,烯酰吗啉、噻虫嗪、氟啶脲、灭幼脲、吡虫啉、甲维盐、除虫脲、氟虫腈、氟甲腈、氟虫腈亚砜、咪鲜胺、二甲戊灵在0.5~50μg/L之间,阿维菌素在0.5~100μg/L范围内线性良好,相关系数r2均大于0.995 0。22种农药的定量限在2μg/kg以下,远低于各待测农药最高残留限量标准(MRL)。该法适于花生中农药残留的同时快速检测。  相似文献   

8.
Negative ion spectra of N-linked glycans were produced by electrospray from a dilute solution of the glycans and various salts in methanol:water using a Waters-Micromass Q-TOF Ultima Global tandem quadrupole/time-of-flight (Q-TOF) mass spectrometer. Stable anionic adducts were formed with chloride, bromide, iodide, nitrate, sulphate, and phosphate. Unstable adducts that fragmented by a cross-ring cleavage of the reducing N-acetylglucosamine (GlcNAc) residue, were formed with fluoride, nitride, sulphide, carbonate, bicarbonate, hydroxide, and acetate. Nitrate adducts prepared from ammonium nitrate produced the most satisfactory spectra as they were relatively free from in-source fragmentation products and gave signals that were about ten times as strong as those from corresponding [M - H]- ions prepared from solutions containing ammonium hydroxide. Detection limits were in the region of 20 fmol. Neutral glycans gave both singly- and doubly-charged ions with the larger glycans preferring the formation of doubly-charged ions. Acidic glycans with several acidic groups gave ions in higher charge states as the result of ionization of the anionic groups. Low energy collision-induced decomposition (CID) spectra of the singly-charged ions were dominated by cross-ring and C-type fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. Formation of these ions could be rationalized by proton abstraction from various hydroxy groups by an initially-formed anionic adduct. Prominent glycosidic and cross-ring cleavage ions defined structural features such as the specific composition of each of the two antennae, presence of a bisecting GlcNAc residue and location of fucose residues, details that were difficult to determine by conventional techniques. Acidic glycans fragmented differently on account of charge localization on the acid functions rather than the hydroxy groups.  相似文献   

9.
Using model acidic glycans, we demonstrate the benefits of permethylation for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight (MALDI/TOF-TOF) tandem mass spectrometry. With both the linear and branched structures, extensive cross-ring fragmentation product ions were generated, yielding valuable information on sugar linkages. Elimination of the negative charges commonly associated with sialylated structures through permethylation allowed their structural analysis in the positive ion mode. Extensive A- and X-type ions were observed for the linear structures, and slightly weaker signals for the branched sialylated structures. The diagnostic cross-ring fragments, permitting a distinction between alpha2-3 and alpha2-6 linkages of the sialic acid residues, were seen in abundance. Importantly, the cross-ring fragmentation with the branched structures provides adequate information to assign sialic acid residues, with a specific linkage, to a particular antenna.  相似文献   

10.
Steroid sex hormones and related synthetic compounds have been shown to provoke alarming estrogenic effects in aquatic organisms, such as feminization, at very low concentrations (ng/L or pg/L). In this work, different chromatographic techniques, namely, gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS), are discussed for the analysis of estrogens, both free and conjugated, and progestogens, and the sensitivities achieved with the various techniques are inter-compared. GC/MS analyses are usually carried out after derivatization of the analytes with bis(trimethylsilyl)trifluoroacetamide (BSTFA). For LC/MS and LC/MS/MS analyses, different instruments, ionization techniques (electrospray (ESI) and atmospheric pressure chemical ionization (APCI)), ionization modes (negative ion (NI) and positive ion (PI)) and monitoring modes (selected ion monitoring (SIM) and selected reaction monitoring (SRM)) are generally employed. Based on sensitivity and selectivity, LC/ESI-MS/MS is generally the method of choice for determination of estrogens in the NI mode and of progestogens in the PI mode (instrumental detection limits (IDLs) 0.1-10 ng/mL). IDLs achieved by LC/ESI-MS in the SIM mode and by LC/ESI-MS/MS in the SRM mode were, in general, comparable, although the selectivity of the latter is significantly higher and essential to avoid false positive determinations in the analysis of real samples. Conclusions and future perspectives are outlined.  相似文献   

11.
The preference for singly charged ion formation by MALDI makes it a better choice than electrospray ionization for profiling mixtures of N-glycans. For structural analysis, fragmentation of negative ions often yields more informative spectra than fragmentation of positive ones but such ions are more difficult to produce from neutral glycans under MALDI conditions. This work investigates conditions for the formation of both positive and negative ions by MALDI from N-linked glycans released from glycoproteins and their subsequent MS/MS and ion mobility behaviour. 2,4,6-Trihydroxyacetophenone (THAP) doped with ammonium nitrate was found to give optimal ion yields in negative ion mode. Ammonium chloride or phosphate also yielded prominent adducts but anionic carbohydrates such as sulfated N-glycans tended to ionize preferentially. Carbohydrates adducted with all three adducts (phosphate, chloride, and nitrate) produced good negative ion CID spectra but those adducted with iodide and sulfate did not yield fragment ions although they gave stronger signals. Fragmentation paralleled that seen following electrospray ionization providing superior spectra than could be obtained by PSD on MALDI-TOF instruments or with ion traps. In addition, ion mobility drift times of the adducted glycans and the ability of this technique to separate isomers also mirrored those obtained following ESI sample introduction. Ion mobility also allowed profiles to be obtained from samples whose MALDI spectra showed no evidence of such ions allowing the technique to be used in conditions where sample amounts were limiting. The method was applied to N-glycans released from the recombinant human immunodeficiency virus glycoprotein, gp120.  相似文献   

12.
Hybrid and complex N-linked glycans were ionized by electrospray in the presence of ammonium nitrate to give [M + NO3]- and [M + (NO3)2]2- ions. Low energy collision-induced decomposition (CID) spectra of both types of ions were almost identical and were dominated by C-type glycosidic and cross-ring fragments, unlike the corresponding spectra of the positive ions that contained mainly B- and Y-type glycosidic fragments. Also, in contrast to fragments in the positive ion spectra, many of these ions appeared to be produced by single pathways following proton abstraction from specific hydroxy groups. Consequently, many ions were diagnostic for specific structural features. Such features included the composition of each of the two antennas, the presence or absence of a bisecting GlcNAc residue, and the location of fucose residues on the core GlcNAc residues and on the antennas. C-ions defined the sequence of the constituent monosaccharide residues. Detailed fragmentation mechanisms are proposed to account for several of the diagnostic ions.  相似文献   

13.
MS/MS data derived from the [M-H](-) ions of desulfated caerulein peptides provide (i) sequencing information from a combination of alpha, beta and gamma backbone cleavages, and (ii) identification of specific amino acid side chains by side-chain cleavages [e.g. Ser (-CH(2)O), Thr (-CH(3)CHO) and Asp (-H(2)O)] (fragmentations having no counterparts in positive ion spectra). In addition, delta and/or gamma backbone cleavage ions from Asp residues identify the position of these residues in the peptide. In contrast, neither delta nor gamma cleavage ions are observed from either the Gln2 residue nor from Phe residues. Full structural information can be obtained from a consideration of the positive and negative ion MS/MS data in concert.  相似文献   

14.
《Analytical letters》2012,45(11):1711-1724
Abstract

A MALDI mass spectrometry method using Bruker Daltonic's LIFT technology for MS/MS analysis has been developed for profiling and characterizing low abundant N-glycans from recombinant immunoglobulin G (IgG) antibodies. In this method, Endoglycosidase H (Endo H) released N-glycans are derivatized at their reducing end with 2-aminobenzamide (2-AB) and separated by normal phase chromatography. Endo H hydrolyses the bond between the two GlcNAc residues of the trimannosyl core of high mannose and hybrid N-linked glycans, leaving the core GlcNAc attached to the protein. High mannose and hybrid type N-glycans are released from the glycoprotein whereas the more abundant, complex biantennary type oligosaccharide structures are unaffected. Analysis of Endo H treated glycan moieties by MALDI mass spectrometry identified several minor species of high mannose and hybrid type glycans. Subsequent MALDI TOF MS/MS analysis of the resulting products yielded information about structural features of the high mannose and hybrid type glycans. This study involving Endo H treatment followed by MALDI mass spectrometry coupled with LIFT technology for MS/MS analysis offers a specific and sensitive technique for visualizing, and characterizing minor glycan species.  相似文献   

15.
Laser‐based ionization techniques have demonstrated to be a valuable analytical tool to study organic pigments by mass spectrometric analyses. Though laser‐based ionization techniques have identified several natural and synthetic organic dyes and pigments, they have never been used in the characterization of purple. In this work, positive and negative‐mode laser desorption/ionization mass spectrometry (LDI‐MS) was used for the first time to detect indigoids in shellfish purple. The method was used to study organic residues collected from archaeological ceramic fragments that were known to contain purple, as determined by a classical high‐performance liquid chromatography‐based procedure. LDI‐MS provides a mass spectral fingerprint of shellfish purple, and it was found to be a rapid and successful tool for the identification of purple. In addition, a comparison between positive and negative mode ionization highlighted the complementarity of the two ionization modes. On the one hand, the negative‐ion mode LDI‐MS showed a better selectivity and sensitivity to brominated molecules, such as 6,6'‐dibromoindigo, 6‐monobromoindigo, 6,6'‐dibromoindirubin, 6‐ and 6’‐monobromoindirubin, thanks to their electronegativity, and produced simpler mass spectra. On the other hand, negative‐ion mode LDI‐MS was found to have a lower sensitivity to non‐brominated compounds, such as indigo and indirubin, whose presence can be established in any case by collecting the complementary positive‐ion LDI mass spectrum. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Underivatized neutral oligosaccharides from human milk were analyzed by nano-electrospray ionization (ESI) using a quadrupole ion trap mass spectrometer (QIT-MS) in the negative-ion mode. Under these conditions neutral oligosaccharides are observed as deprotonated molecules [M-H]- with high intensity. CID-experiments of these species with the charge localized at the reducing end lead to C-type fragment ions forming a "new" reducing end. Fragmentations are accompanied by cross-ring cleavages that yield information about linkages of internal monosaccharides. Several isomeric compounds with distinct structural features, such as different glycosidic linkages, fucosylation and branching sites were investigated. The rules governing the fragmentation behavior of this class of oligosaccharides were elucidated and tested for a representative number of certain isomeric glycoforms using the MS/MS and MS(n) capabilities of the QIT. On the basis of the specific fragmentation behavior of deprotonated molecules, the position of fucoses and the linkage type (Gal beta-->3 GlcNAc or Gal beta1-->4 GlcNAc) could be determined and linear and branched could be differentiated. Rules could be established which can be applied in further investigations of these types of oligosaccharides even from heterogenous mixtures.  相似文献   

17.
To investigate the possibility of structural assignment based on negative-ion tandem multistage (MSn) mass spectral matching, four isomers of 2-aminopyridine (PA)-derivatized monosialylated oligosaccharides (i.e., complex-type N-glycans with an alpha2-3- or alpha2-6-linked sialic acid on alpha1-6 or alpha1-3 antennae) were analyzed using high-performance liquid chromatography/electrospray ion trap time-of-flight mass spectrometry (HPLC/ESI-IT-TOFMS). The negative ion [M-2H]2- is observed predominantly in the MS1 spectra without the loss of a sialic acid. The MS2 spectra derived from it are sufficiently reproducible that MS2 spectral matching based on correlation coefficients can be applied to the assignment of these isomers. The isomers containing a sialic acid on alpha1-6 or alpha1-3 antennae can be distinguished by MS2 spectral matching, but the alpha2-3 and alpha2-6 linkage types of sialic acid cannot be distinguished by their MS2 spectra. However, MS3 spectra derived from fragment ions containing a sialic acid (i.e., C4- and D-type ions) clearly differentiate the alpha2-3 and alpha2-6 linkage types of sialic acid in their MS3 spectral patterns. This difference might be rationalized in terms of a proton transfer from the reducing-end mannose to the negatively charged sialic acid. These two moieties are very close in the structural conformations of the precursor C4-type fragment ions of alpha2-6 linkage type, as predicted by molecular mechanics calculations. Thus, negative-ion MSn (n = 2, 3) spectral matching was demonstrated to be useful for the structural assignment of these four monosialylated PA N-glycan isomers.  相似文献   

18.
Fragmentation behavior of fucosylated N-glycans in both protonated and sodiated form was studied by low-energy collision-induced dissociation with an ion trap mass spectrometer as well as by laser-induced dissociation with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Diantennary, core-(alpha1-6)-fucosylated N-glycans with Lewis X (Gal(beta1-4)[Fuc(alpha1-3)]GlcNAcbeta1-) and/or fucosylated LacdiNAc antennae (GalNAc(beta1-4)[Fuc(alpha1-3)]GlcNAcbeta1-) were obtained from the human parasite Schistosoma mansoni and used as model substances, after labeling with 2-aminobenzamide, or as native reducing glycans. While fragment spectra of sodiated as well as protonated species obtained in both mass spectrometers resulted in B- and Y-type ions, fragmentation of proton adducts additionally gave rise to various fragment ions which had acquired fucose residues from other parts of the molecule. In particular, fucose was transferred efficiently to the Lewis X antennae suggesting the occurrence of difucosylated antennae, which could erroneously be interpreted as Lewis Y epitopes. By studying two additional model substances, this fucose gain was shown to occur by transfer of fucose between the antennae, but not by transfer of a core-(alpha1-6)-fucose. Despite the drastically different lifetimes of the ions, protonated species analyzed on the ion trap (millisecond range) and by MALDI-TOF/TOF-MS (microsecond range) showed similar rearrangement patterns, suggesting that the fucose mobility goes hand in hand with decomposition. Notably, permethylation of the model N-glycans seemed to completely preclude fucose migration. This study indicates that caution should be applied with the interpretation of tandem mass spectrometric (MS/MS) data of protonated glycoconjugates, including glycopeptides, because of the potential occurrence of fucose rearrangements.  相似文献   

19.
The Lewis x structure [Lex, Galbeta1-4(Fucalpha1-3)GlcNAc] motif is one of the tumor antigens and plays an important role in oncogenesis, development, cellular differentiation and adhesion. The detection of Lex-carbohydrates and their structural analysis are necessary to clarify the role of Lex in several biological events. Mass spectrometry has been preferably used for the structural analysis of carbohydrates. Especially, collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), which causes a glycosidic bond cleavage, is used for carbohydrate sequencing. However, Lex cannot be identified by MS/MS due to the existence of the positional isomers, such as Lewis a [Galbeta1-3(alpha1-4Fuc)GlcNAc]. In the present study, we demonstrate the specific detection of Lex-carbohydrates in a biological sample by using multiple-stage MS/MS (MSn). Using pyridylaminated oligosaccharides bearing Lex, we found that the Lex-motif yields a cross-ring fragment by the cleavage of a bond between C-3 and C-4 of GlcNAc in Gal(Fuc)GlcNAc. The Lex-specific cross-ring fragment ion at m/z 259 was effectively detected by sequential scans, consisting of a full MS1 scan, data-dependent CID MS2 scan, MS3 of [Gal(Fuc)GlcNAc+Na]+ at m/z 534, and MS4 of [GalGlcNAc+Na]+ at m/z 388. The sequential scan was applied to N-linked oligosaccharide profiling using a LC/ESI-MSn system equipped with a graphitized carbon column. We successfully detected the Lex-motif and elucidated the structures of several Lex and Lewis y [(Fucalpha1-2)Galbeta1-4(Fucalpha1-3)GlcNAc] oligosaccharides in the murine kidney used as a model tissue. Our method is expected to be a powerful tool for the specific detection of the Lex-motif, and structural elucidation of Lex-carbohydrates in biological samples.  相似文献   

20.
Thyroid-stimulating hormone is a vital component of the regulatory mechanism that maintains the structure and function of the thyroid gland and governs thyroid hormone release. In this paper we report the first detailed structural characterization of the N-linked oligosaccharides of recombinant human thyroid-stimulating hormone (rhTSH). Using a strategy combining mass spectrometric analysis and sequential exoglycosidase digestion, we have defined the structures of the N-glycans released from recombinant human thyrotropin by peptide N-glycosidase F. All glycans are complex-type glycans and are mainly of the bi- and triantennary type with variable degrees of fucosylation and sialylation. The major non-reducing epitope in the complex-type glycans is: NeuAcalpha2-3Galbeta1-4GlcNAc (sialylated LacNAc). The carbohydrate microheterogeneity at the three glycosylation sites was studied using reversed-phase high-performance liquid chromatography (RP-HPLC), concanavalin A affinity chromatography and mass spectrometric techniques, including both matrix-assisted laser desorption/ionization (MALDI) and electrospray. rhTSH was reduced, carboxymethylated and then digested with trypsin. The mixture of peptides and glycopeptides was subjected to RP-HPLC and the structures of the glycopeptides were determined by MALDI in conjunction with on-target exoglycosidase digestions. After PNGase F digestion, the peptide moiety of the glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the quadrupole time-of-flight tandem mass (QTOF-MS/MS) spectrum. Glycosylation sites Asn-alpha52 and Asn-alpha78 contain mainly bi- and triantennary complex-type glycans. Only glycosylation site Asn-alpha52 bears fucosylated N-glycans. Minor tetraantennary complex structures were also observed on both glycosylation sites. Profiling of the carbohydrate moieties of Asn-beta23 indicates a large heterogeneity. Bi-, tri-, and tetraantennary N-glycans were present at this site. These data demonstrate site-specificity of glycosylation in the alpha subunit but not in the beta subunit of rhTSH with Asn-alpha52 bearing essentially di- and triantennary glycans with or without core fucosylation and bi- and triantennary glycans with no core fucosylation being attached to Asn-alpha78.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号