首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
刘一蒲  梁宵  陈辉  高瑞芹  石磊  杨岚  邹晓新 《催化学报》2021,42(7):1054-1077
降低对化石能源依赖,实现无碳能源需要构建以可再生能源(如太阳能、风能等)为主体的能源框架.氢气是无碳能源框架下的一种较为理想的能源载体,而电解水制氢技术能够有效制备环境友好的高纯氢气.其中,质子交换膜基(PEM)电解水技术相较碱性电解技术能够实现更高的质子导电性、电解效率、响应速度以及产物气体分离能力,展现出较高的应用...  相似文献   

2.
3.
The catalytic water-oxidation activity of Wilkinson's iridium acetate trimer (1) has been characterized electrochemically and by using chemical oxidants. We show that 1 can function as an operationally homogeneous water-oxidation catalyst when driven with sodium periodate as a primary oxidant, but rapidly decomposes using Ce(IV) as a primary oxidant.  相似文献   

4.
5.
An enantioselective synthesis of anthrone-derived NHPI analogues has been developed. One of these analogues, in combination with Co salts, was employed to catalyse the aerobic oxidation of benzylic compounds and diols. Exploratory studies using a racemic version of the catalyst were also conducted. Radical addition of dioxolanes or alcohols to activated alkenes with molecular oxygen as the terminal oxidant was also shown to be catalysed with NHPI analogues.  相似文献   

6.
7.
Polymer supported transition metal complexes of N,N′-bis (o-hydroxy acetophenone) hydrazine (HPHZ) Schiff base were prepared by anchoring its amino derivative Schiff base (AHPHZ) on cross-linked (6 wt%) polymer beads and then loading iron(III), copper(II) and zinc(II) ions in methanol. The loading of HPHZ Schiff base on polymer beads was 3.436 mmol g−1 and efficiency of complexation of polymer anchored HPHZ Schiff base for iron(III), copper(II) and zinc(II) ions was 83.21, 83.40 and 83.17%, respectively. The efficiency of complexation of unsupported HPHZ Schiff base for these metal ions was lower than polymer supported HPHZ Schiff base. The structural information obtained by spectral, magnetic and elemental analysis has suggested octahedral and square planar geometry for iron(III) and copper(II) ions complexes, respectively, with paramagnetic behavior, but zinc(II) ions complexes were tetrahedral in shape with diamagnetic behavior. The complexation with metal ions has increased thermal stability of polymer anchored HPHZ Schiff base. The catalytic activity of unsupported and polymer supported HPHZ Schiff base complexes of metal ions was evaluated by studying the oxidation of phenol (Ph) and epoxidation of cyclohexene (CH). The polymer supported metal complexes showed better catalytic activity than unsupported metal complexes. The catalytic activity of metal complexes was optimum at a molar ratio of 1:1:1 of substrate to oxidant and catalyst. The selectivity for catechol (CTL) and epoxy cyclohexane (ECH) in oxidation of phenol and epoxidation of cyclohexene was better with polymer supported metal complexes in comparison to unsupported metal complexes. The energy of activation for oxidation of phenol (22.8 kJ mol−1) and epoxidation of cyclohexene (8.9 kJ mol−1) was lowest with polymer supported complexes of iron(III) ions than polymer supported Schiff base complexes of copper(II) and zinc(II) ions.  相似文献   

8.
A tetradentate Schiff base (teta), obtained from triethylenetetramine and salicylaldehyde, has been covalently bonded to divinylbenzene cross-linked chloromethylated polystyrene. This chelating ligand, abbreviated as PS-teta (PS = polymeric support), reacts with metal chlorides (Cu2+, Co2+, and Ni2+) in methanol to give polymer-bound transition metal complexes, PS-Cu(II)teta/(Cat-1), PS-Ni(II)teta/(Cat-2), and PS-Co(II)teta/(Cat-3), formation of which has been established by various physiochemical methods and spectroscopic techniques. The catalytic potential of these materials has been tested for the oxidation of various alkenes, alkanes, alcohols, and thioethers in the presence of 30% H2O2 as an oxidant. At the same time, these catalysts are very stable and could be reused in oxidation reactions for more than five times without noticeable loss of their catalytic activity.  相似文献   

9.
The preparation of three new octadentate tetranucleating ligands made out of two Ru-Hbpp-based units [where Hbpp is 3,5(bispyridyl)pyrazole], linked by a xylyl group attached at the pyrazolate moiety, of general formula (Hbpp)(2)-u-xyl (u = p, m, or o) is reported, together with its dinucleating counterpart substituted at the same position with a benzyl group, Hbpp-bz. All of these ligands have been characterized with the usual analytical and spectroscopic techniques. The corresponding tetranuclear ruthenium complexes of general formula {[Ru(2)(trpy)(2)(L)](2)(μ-(bpp)(2)-u-xyl)}(n+) [L = Cl or OAc, n = 4; L = (H(2)O)(2), n = 6] and their dinuclear homologues {[Ru(2)(trpy)(2)(L)](μ-bpp-bz)}(n+) [L = Cl or OAc, n = 2; L = (H(2)O)(2), n = 3] have also been prepared and thoroughly characterized both in solution and in the solid state. In solution, all of the complexes have been characterized spectroscopically by UV-vis and NMR and their redox properties investigated by means of cyclic voltammetry techniques. In the solid state, monocrystal X-ray diffraction analysis has been carried out for two dinuclear complexes {[Ru(2)(trpy)(2)(L)](μ-bpp-bz)}(2+) (L = Cl and OAc) and for the tetranuclear complex {[Ru(2)(trpy)(2)(μ-OAc)](2)(μ-(bpp)(2)-m-xyl)}(4+). The capacity of the tetranuclear aqua complexes {[Ru(2)(trpy)(2)(H(2)O)(2)](2)(μ-(bpp)(2)-u-xyl)}(6+) and the dinuclear homologue {[Ru(2)(trpy)(2)(H(2)O)(2)](μ-bpp-bz)}(3+) to act as water-oxidation catalysts has been evaluated using cerium(IV) as the chemical oxidant in pH = 1.0 triflic acid solutions. It is found that these complexes, besides generating significant amounts of dioxygen, also generate carbon dioxide. The relative ratio of [O(2)]/[CO(2)] is dependent not only on para, meta, or ortho substitution of the xylylic group but also on the concentration of the starting materials. With regard to the tetranuclear complexes, the one that contains the more sterically constrained ortho-substituted ligand generates the highest [O(2)]/[CO(2)] ratio.  相似文献   

10.
11.
In the present work, the ability of two ruthenium hydride catalysts supported on multiwall carbon nanotubes, [Ru–H@EDT–MWCNT], and gold nanoparticles cored triazine dendrimer, [Ru–H@AuNPs–TD], in the direct conversion of alcohols to carboxylic acids via transfer hydrogenation using styrene oxide as oxidant is reported. Different alcohols were successfully converted to their corresponding carboxylic acids. The results showed that these two heterogeneous catalysts are more efficient than the homogeneous counterpart. In addition, the catalysts were reused several times.  相似文献   

12.
The selective oxidation of naphthalene and its derivatives to give naphthoquinones has been investigated in detail. The reaction can be carried out effectively in the presence of a catalytic amount of Ru complexes (0.2 mol%) and phase transfer catalysts (PTC) using H2O2 as the terminal oxidant and water as the solvent. The effect of different ruthenium complexes, phase transfer catalysts, and the concentration of hydrogen peroxide were studied. Compared to previous procedures for this type of reactions, acidic solvents and high concentration of hydrogen peroxide are not necessary, which makes the reaction more environmentally friendly.  相似文献   

13.
A tetrahedrally coordinated iron in framework substituted microporous AlPO-5 catalysts are shown to be active and selective for the hydroxylation of benzene to phenol, using nitrous oxide as the oxidant.  相似文献   

14.
Sodium chlorite is an efficient stoichiometric oxidant in Sharpless asymmetric dihydroxylation. One sodium chlorite provides the reaction with the stoichiometric number of electrons and hydroxide ions needed to dihydroxylate two olefins without the consumption of any additional base. 100% conversion in sodium chlorite asymmetric dihydroxylation of styrene was achieved twice as fast as in the established Sharpless K(3)[Fe(CN)(6)] dihydroxylation. Even internal olefins were dihydroxylated fast with sodium chlorite without hydrolysis aids. Eight olefins were dihydroxylated to corresponding vicinal diols with yields and ees as good as those reported in the literature for other similar processes.  相似文献   

15.
Iridium half-sandwich complexes of the types Cp*Ir(N-C)X, [Cp*Ir(N-N)X]X, and [CpIr(N-N)X]X are catalyst precursors for the homogeneous oxidation of water to dioxygen. Kinetic studies with cerium(IV) ammonium nitrate as primary oxidant show that oxygen evolution is rapid and continues over many hours. In addition, [Cp*Ir(H(2)O)(3)]SO(4) and [(Cp*Ir)(2)(μ-OH)(3)]OH can show even higher turnover frequencies (up to 20 min(-1) at pH 0.89). Aqueous electrochemical studies on the cationic complexes having chelate ligands show catalytic oxidation at pH > 7; conversely, at low pH, there are no oxidation waves up to 1.5 V vs NHE for the complexes. H(2)(18)O isotope incorporation studies demonstrate that water is the source of oxygen atoms during cerium(IV)-driven catalysis. DFT calculations and kinetic experiments, including kinetic-isotope-effect studies, suggest a mechanism for homogeneous iridium-catalyzed water oxidation and contribute to the determination of the rate-determining step. The kinetic experiments also help distinguish the active homogeneous catalyst from heterogeneous nanoparticulate iridium dioxide.  相似文献   

16.
Trace amounts of iodate and periodate in aqueous solution have been determined spectrophotometrically, based on the reaction of the ions with p-phenylenediamine, in acidic medium, to form pink-red-colored species with maximum absorption at 520 nm and adherence to Beer's law over wide concentration ranges of the ions. Further, the color reaction is fast and needs no extraction step.  相似文献   

17.
The oxidation of some 3-(methoxy- and ethoxycarbonyl)tetrahydro-β-carboline derivatives with sodium periodate led to the formation of 1, 4-benzodiazonine derivatives or fully aromatic β-carbolines depending on both nature and number of substituents at 1-position.  相似文献   

18.
Asymmetric epoxidation of various olefins with an N-aryl-substituted oxazolidinone-containing ketone as catalyst and hydrogen peroxide as the primary oxidant has been investigated, and up to 96% ee was obtained.  相似文献   

19.
The molecular mechanism of the Baeyer-Villiger oxidation of cyclohexanone with hydrogen peroxide catalyzed by the Sn-beta zeolite has been investigated by combining molecular mechanics, quantum-chemical calculations, spectroscopic, and kinetic techniques. A theoretical study of the location of Sn in zeolite beta was performed by using atomistic force-field techniques to simulate the local environment of the active site. An interatomic potential for Sn/Si zeolites, which allows the simulation of zeolites containing Sn in a tetrahedral environment, has been developed by fitting it to the experimental properties of quartz and SnO2(rutile). The tin active site has been modeled by means of a Sn(OSiH3)3OH cluster, which includes a defect in the framework that provides the flexibility necessary for the interaction between the adsorbates and the Lewis acid center. Two possible reaction pathways have been considered in the computational study, one of them involving the activation of the cyclohexanone carbonyl group by Sn (1) and the other one involving hydrogen peroxide being activated through the formation of a tin-hydroperoxo intermediate (2). Both the quantum-chemical results and the kinetic study indicate that the reaction follows mechanism 1, and that the catalyst active site consists of two centers: the Lewis acid Sn atom to which cyclohexanone has to coordinate, and the oxygen atom of the Sn-OH group that interacts with H2O2 forming a hydrogen bond.  相似文献   

20.
The first Oppenauer oxidation of primary alcohols with acetone or 2-butanone by an amino alcohol-based Ir bifunctional catalyst was accomplished. The reaction proceeds with 1 mol % catalyst in acetone or 2-butanone at 30-80 degrees C to give the corresponding aldehydes in 33-96% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号