首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have performed thermodynamic and neutron scattering measurements on the S=1/2 kagomé lattice antiferromagnet ZnCu3(OH)6Cl2. The susceptibility indicates a Curie-Weiss temperature of theta CW approximately = -300 K; however, no magnetic order is observed down to 50 mK. Inelastic neutron scattering reveals a spectrum of low energy spin excitations with no observable gap down to 0.1 meV. The specific heat at low-T follows a power law temperature dependence. These results suggest that an unusual spin liquid state with essentially gapless excitations is realized in this kagomé lattice system.  相似文献   

2.
We report the determination of the Dzyaloshinsky-Moriya interaction, the dominant magnetic anisotropy term in the kagome spin-1/2 compound ZnCu3(OH)6Cl2. Based on the analysis of the high-temperature electron spin resonance (ESR) spectra, we find its main component |Dz|=15(1) K to be perpendicular to the kagome planes. Through the temperature dependent ESR linewidth, we observe a building up of nearest-neighbor spin-spin correlations below approximately 150 K.  相似文献   

3.
The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data.  相似文献   

4.
We analyze the experimental data for the magnetic susceptibility of the material ZnCu3(OH)6Cl2 in terms of the Kagome Lattice Heisenberg model (KLHM), discussing possible role of impurity spins, dilution, exchange anisotropy, and both out-of-plane and in-plane Dzyloshinski-Moriya (DM) anisotropies, with explicit theoretical calculations using the numerical linked cluster method and exact diagonalization. The high-temperature experimental data are well described by the pure Heisenberg model with J=170 K. We show that the sudden upturn in the susceptibility around T=75 K is due to DM interactions. We also observe that at intermediate temperatures, below T=J, our calculated susceptibility for KLHM fits well with a power law T(-0.25).  相似文献   

5.
We report, through 17O NMR, an unambiguous local determination of the intrinsic kagome lattice spin susceptibility as well as that created around nonmagnetic defects arising from natural Zn/Cu exchange in the S=1/2 (Cu2+) herbertsmithite ZnCu3(OH)6Cl2 compound. The issue of a singlet-triplet gap is addressed. The magnetic response around a defect is found to markedly differ from that observed in nonfrustrated antiferromagnets. Finally, we discuss our relaxation measurements in the light of Cu and Cl NMR data and suggest a flat q dependence of the excitations.  相似文献   

6.
ZnCu(3)(OH)(6)Cl(2) (S=1/2) is a promising new candidate for an ideal Kagome Heisenberg antiferromagnet, because there is no magnetic phase transition down to approximately 50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility decreases toward T=0, but that slow freezing of the lattice near approximately 50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near T=0 obey a power-law behavior in high magnetic fields.  相似文献   

7.
We compute the magnetic susceptibility and specific heat of the spin- Heisenberg model on the kagome lattice with high-temperature expansions and exact diagonalizations. We compare the results with the experimental data on ZnCu3(OH)6Cl2 obtained by Helton et al. [Phys. Rev. Lett. 98, 107204 (2007)]. Down to kBT/J≃0.2, our calculations reproduce accurately the experimental susceptibility, with an exchange interaction J≃190 K and a contribution of 3.7% of weakly interacting impurity spins. The comparison between our calculations of the specific heat and the experiments indicate that the low-temperature entropy (below ~20 K) is smaller in ZnCu3(OH)6Cl2 than in the kagome Heisenberg model, a likely signature of other interactions in the system.  相似文献   

8.
Experimental evidence for a plethora of low energy spin excitations in the spin-1/2 kagome antiferromagnet ZnCu3(OH)6Cl2 may be understandable in terms of an extended Fermi surface of spinons coupled to a U(1) gauge field. We carry out variational calculations to examine the possibility that such a state may be energetically viable. A Gutzwiller-projected wave function reproduces the dimerization of a kagome strip found previously by the density matrix renormalization group. Application to the full kagome lattice shows that the inclusion of a small ferromagnetic next-nearest-neighbor interaction favors a ground state with a spinon Fermi surface.  相似文献   

9.
We study a model of hard-core bosons with short-range repulsive interactions at half filling on the kagome lattice. Using quantum Monte Carlo numerics, we find that this model shows a continuous superfluid-insulator quantum phase transition, with exponents z=1 and nu approximately 0.67(5). The insulator, I*, exhibits short-ranged density and bond correlations, topological order, and exponentially decaying spatial vison correlations, all of which point to a Z2 fractionalized phase. We estimate the vison gap in I* from the temperature dependence of the energy. Our results, together with the equivalence between hard-core bosons and S=1/2 spins, provide compelling evidence for a spin-liquid phase in an easy-axis spin-1/2 model with no special conservation laws.  相似文献   

10.
《中国物理 B》2021,30(10):100601-100601
The spin-1/2 kagome antiferromagnets are key prototype materials for studying frustrated magnetism. Three isostructural kagome antiferromagnets LnCu_3(OH)_6Cl_3(Ln = Gd, Tb, Dy) have been successfully synthesized by the hydrothermal method. LnCu_3(OH)_6Cl_3 adopts space group P■m1 and features the layered Cu-kagome lattice with lanthanide Ln~(3+) cations sitting at the center of the hexagons. Although heavy lanthanides(Ln = Gd, Tb, Dy) in LnCu_3(OH)_6Cl_3 provide a large effective magnetic moment and ferromagnetic-like spin correlations compared to light-lanthanides(Nd, Sm, Eu)analogues, Cu-kagome holds an antiferromagnetically ordered state at around 17K like YCu_3(OH)_6Cl_3.  相似文献   

11.
12.
In this paper, we use a new hybrid method to compute the thermodynamic behavior of the spin- 1 / 2 Kagome antiferromagnet under the influence of a large external magnetic field. We find a T2 low-temperature behavior and a very low sensitivity of the specific heat to a strong external magnetic field. We display clear evidence that this low-temperature magnetothermal effect is associated with the existence of low-lying fluctuating singlets, but also that the whole picture ( T2 behavior of C(v) and the thermally activated spin susceptibility) implies contribution of both nonmagnetic and magnetic excitations. Comparison with experiments is made.  相似文献   

13.
We investigate entanglement of spin pairs in alternating open spin chains (s = 1/2) with spin-spin interactions (SSI) in the thermodynamic equilibrium state in an external magnetic field. The reduced density matrix of an arbitrarily chosen spin pair was calculated. The entanglement of a spin pair was evaluated with the Wootters criterion. The temperature at which the entangled state arises in the chosen pair was determined. Entanglement (concurrence) is shown to oscillate as a function of the position of a spin pair in the chain. The results demonstrate the dependence of the entanglement in arbitrarily chosen pairs of neighboring spins on the temperature, the position of the spin pair in the chain, chain length, and the ratio between the SSI constants. Qualitative explanation of these dependences is offered. The role of the terminal spins in the generation of entanglement is explained.  相似文献   

14.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

15.
We have investigated the electron spin resonance (ESR) on single crystals of BaCu2Ge2O7 at temperatures between 300 and 2 K and in a large frequency band, 9.6-134 GHz, in order to test the predictions of a recent theory, proposed by Oshikawa and Affleck (OA) [Phys. Rev. Lett. 82, 5136 (1999)]], which describes the ESR in a spin-1/2 Heisenberg chain with the Dzyaloshinskii-Moriya interaction. We find, in particular, that the ESR linewidth, Delta H, displays a rich temperature behavior. As the temperature decreases from T(max)/2 approximately 170 to 50 K, Delta H shows a rapid and linear decrease, Delta H approximately T. At low temperatures, below 50 K, Delta H acquires a strong dependence on the magnetic field orientation and for H axially c it shows a (h/T)(2) behavior which is due to an induced staggered field h, according to OA's prediction.  相似文献   

16.
Anisotropic effects have been found in the low temperature (< 10 K) nuclear spin lattice relaxation rates in the linear paramagnet CsNiCl3 in a strong magnetic field (~ 60 kOe). The existence of a small single ion anisotropy term may be the cause of these effects.  相似文献   

17.
The ground state and the lowest excited states of the spin 1/2-Heisenberg model are investigated by exact diagonalization and variational Monte Carlo techniques. Our trial state represents a generalization of a wave function introduced by Hulthen, Kasteleijn and Marshall. The long range character of the spin-correlation function is in excellent agreement with exact diagonalization and also with recent neutron scattering results for La2CuO4. The asymptotic behavior of the spin-correlation function is found to differ from spin-wave theory. From the exact (N<=20 spins) and variational (N<=400) ground state energies we determine as asymptotic values 1.3025 and 1.288, respectively. We calculate the dispersion for the spin-wave excitations and identify an excited triplet which becomes degenerate with the ground state in the thermodynamic limit. This triplet state allows spontaneous symmetry breaking to occur atT=0 K. Quantum fluctuations reduce the sublattice magnetization to an effective value of 0.195 (3) as compared to the Néel-state value of 1/2.  相似文献   

18.
Hai Huang   《Physics letters. A》2007,360(6):731-734
The inelastic neutron-scattering experiment on CsNiCl3 gives much bigger total intensity of multi-particle continuum than the theoretical calculation by the (1+11+1)-dimensional O(3) non-linear σ-model. Three-dimensional effect has to be considered. A scenario was proposed where the interchain interaction is treated as an effective staggered magnetic field. We propose another model to approximately include the effect of the interchain coupling, and use the large-N expansion to do the calculations. In this circumstance we find that the Néel temperature is about 5 K, and also that for a range of wave-vectors the single magnon is unstable and will decay into three magnons.  相似文献   

19.
In this work we study the critical behavior of the quantum spin-1/2 anisotropic Heisenberg antiferromagnet in the presence of a longitudinal field on a body centered cubic (bcc) lattice as a function of temperature, anisotropy parameter (Δ)(Δ) and magnetic field (H  ), where Δ=0Δ=0 and 1 correspond the isotropic Heisenberg and Ising models, respectively. We use the framework of the differential operator technique in the effective-field theory with finite cluster of N  =4 spins (EFT-4). The staggered ms=(mAmB)/2ms=(mAmB)/2 and total m=(mA+mB)/2m=(mA+mB)/2 magnetizations are numerically calculated, where in the limit of ms→0ms0 the critical line TN(H,Δ)TN(H,Δ) is obtained. The phase diagram in the T−HTH plane is discussed as a function of the parameter ΔΔ for all values of H∈[0,Hc(Δ)]H[0,Hc(Δ)], where Hc(Δ)Hc(Δ) correspond the critical field (TN=0)(TN=0). Special focus is given in the low temperature region, where a reentrant behavior is observed around of H=Hc(Δ)≥Hc(Δ=1)=8JH=Hc(Δ)Hc(Δ=1)=8J in the Ising limit, results in accordance with Monte Carlo simulation, and also was observed for all values of Δ∈[0,1]Δ[0,1]. This reentrant behavior increases with increase of the anisotropy parameter ΔΔ. In the limit of low field, our results for the Heisenberg limit are compared with series expansion values.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号