首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
This paper reports on N-, mixed-, and Ga-polarity buffer layers are grown by molecular beam epitaxy (MBE) on sapphire (0001) substrates, with the GaN thicker films grown on the buffer layer with different polarity by hydride vapour epitaxy technique (HVPE). The surface morphology, structural and optical properties of these HVPE-GaN epilayers are characterized by wet chemical etching, scanning electron microscope, x-ray diffraction, and photoluminescence spectrum respectively. It finds that the N-polarity film is unstable against the higher growth temperature and wet chemical etching, while that of GaN polarity one is stable. The results indicate that the crystalline quality of HVPE-GaN epilayers depends on the polarity of buffer layers.  相似文献   

2.
GaN layers with different polarities have been prepared by radio-frequency molecular beam epitaxy (RF-MBE) and characterized by Raman scattering. Polarity control are realized by controlling Al/N flux ratio during high temperature AlN buffer growth. The Raman results illustrate that the N-polarity GaN films have frequency shifts at $A_{1}$(LO) mode because of their high carrier density; the forbidden $A_{1}$(TO) mode occurs for mixed-polarity GaN films due to the destroyed translation symmetry by inversion domain boundaries (IDBS); Raman spectra for Ga-polarity GaN films show that they have neither frequency shifts mode nor forbidden mode. These results indicate that Ga-polarity GaN films have a better quality, and they are in good agreement with the results obtained from the room temperature Hall mobility. The best values of Ga-polarity GaN films are 1042 cm$^{2}$/Vs with a carrier density of 1.0$\times $10$^{17}$~cm$^{ - 3}$.  相似文献   

3.
A GaN interlayer between low temperature (LT) A1N and high temperature (PIT) A1N is introduced to combine HT AIN, LT A1N and composition-graded A1GaN as a novel buffer layer for GaN films grown on Si (111) substrates. The crystal quality, surface morphology and strain state of the GaN film with this new buffer are compared with those of GaN grown on a conventional buffer structure. By changing the thickness of LT A1N, the crystal quality is optimized and the crack-free GaN film is obtained. The in-plane strain in the GaN film can be changed from tensile to compressive strain with the increase in LT A1N thickness.  相似文献   

4.
We study the effect of the AlGaN interlayer on structural quality and strain engineering of the GaN films grown on SiC substrates with an AIN buffer layer. Improved structural quality and tensile stress releasing are realized in unintentionally doped GaN thin films grown on 6 H—SiC substrates by metal organic chemical vapor deposition.Using the optimized AlGaN interlayer, we find that the full width at half maximum of x-ray diffraction peaks for GaN decreases dramatically, indicating an improved crystalline quality. Meanwhile, it is revealed that the biaxial tensile stress in the GaN film is significantly reduced from the Raman results. Photoluminescence spectra exhibit a shift of the peak position of the near-band-edge emission, as well as the integrated intensity ratio variation of the near-band-edge emission to the yellow luminescence band. Thus by optimizing the AlGaN interlayer,we could acquire the high-quality and strain-relaxation GaN epilayer with large thickness on SiC substrates.  相似文献   

5.
The boron-oxygen-nitrogen(BON) films have been grown on Si wafer by the low-frequency rf-plasma-enhanced metal-organic chemical vapour deposition method.The homogeneous film structure of completely amorphous BON is first fabricated on a low-temperature-made buffer at 500℃ with N2 plasma and is observed with a highresolution-electron microscope by the transmission-electron diffraction.The results show that the interfaces among substrate/buffer/film are clear and straight in the structured film.A heterogeneous film containing nano-sized crystalline particles is also grown by a routine growth procedure as a referential structure,The C-V characteristic is measured on both the amprphous and crystal-containing films by using the metal-oxidesemiconductor structure,The dielectric constants of the films are,therefore,deduced to be 5.9 and 10.5 for the amorphous and crystal-containing films,respectively,The C-V results also indicate that more trapped charges exist in the amorphous film.The binding energy of the B,O.and N atoms in the amprphous film is higher than that in the crystal-containing one,and the N-content in the latter is found to be higher than that in the former by x-ray photo-electron spectroscopy.The different electrical Property of the films is thought to originate from the energy state of the covalent electrons.  相似文献   

6.
The quality of an AlGaN channel heterojunction on a sapphire substrate is massively improved by using an AlGaN/GaN composite buffer layer. We demonstrate an Al0.4Ga0.6N/Al0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V·s) and a sheet resistance of 890Ω/ under room temperature. The crystalline quality and the electrical properties of the AlGaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance–voltage(C–V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.  相似文献   

7.
A series of In Sb thin films were grown on Ga As substrates by molecular beam epitaxy(MBE).Ga Sb/Al In Sb is used as a compound buffer layer to release the strain caused by the lattice mismatch between the substrate and the epitaxial layer,so as to reduce the system defects.At the same time,the influence of different interface structures of Al In Sb on the surface morphology of buffer layer is explored.The propagation mechanism of defects with the growth of buffer layer is compared and analyzed.The relationship between the quality of In Sb thin films and the structure of buffer layer is summarized.Finally,the growth of high quality In Sb thin films is realized.  相似文献   

8.
Semi-insulating GaN is grown by using a two-step A1N buffer layer by metalorganic chemical vapour deposition. The sheet resistance of as-grown semi-insulating GaN is dramatically increased to 10^13 Ω/sq by using two-step A1N buffer instead of the traditional low-temperature GaN buffer. The high sheet resistance of as-grown GaN over 10^13 Ω/sq is due to inserting an insulating buffer layer (two-step A1N buffer) between the high-temperature GaN layer and a sapphire substrate which blocks diffusion of oxygen and overcomes the weakness of generating high density carrier near interface of GaN and sapphire when a low-temperature GaN buffer is used. The result suggests that the high conductive feature of unintentionally doped GaN is mainly contributed from the highly conductive channel near interface between GaN and the sapphire substrate, which is indirectly manifested by room-temperature photoluminescence excited by an incident laser beam radiating on growth surface and on the substrate. The functions of the two-step A1N buffer layer in reducing screw dislocation and improving crystal quality of GaN are also discussed.  相似文献   

9.
The quality of an A1GaN channel heterojunction on a sapphire substrate is massively improved by using an A1- GaN/GaN composite buffer layer. We demonstrate an A10.4Gao.6N/AI0.18Ga0.82N heterojunction with a state-of-the-art mobility of 815 cm2/(V.s) and a sheet resistance of 890Ω/口 under room temperature. The crystalline quality and the electrical properties of the A1GaN heterojunction material are analyzed by atomic force microscopy, high-resolution X-ray diffraction, and van der Pauw Hall and capacitance-voltage (C-V) measurements. The results indicate that the improved electrical properties should derive from the reduced surface roughness and low dislocation density.  相似文献   

10.
AlN/GaN superlattice buffer is inserted between GaN epitaxial layer and Si substrate before epitaxial growth of GaN layer. High-quality and crack-free GaN epitaxial layers can be obtained by inserting AlN/GaN superlattice buffer layer. The influence of AlN/GaN superlattice buffer layer on the properties of GaN films are investigated in this paper. One of the important roles of the superlattice is to release tensile strain between Si substrate and epilayer. Raman spectra show a substantial decrease of in-plane tensile strain in GaN layers by using AlN/GaN superlattice buffer layer. Moreover, TEM cross-sectional images show that the densities of both screw and edge dislocations are significantly reduced. The GaN films grown on Si with the superlattice buffer also have better surface morphology and optical properties.  相似文献   

11.
GaN films were grown on sapphire substrates by laser-induced reactive epitaxy. The domains in the films were determined to be the Ga-polarity by the convergent beam electron diffraction (CBED) technique, while the adjacent matrices had the N-polarity. The domain boundaries were characterized as inversion domain boundaries (IDBs). An atomic structure of the IDB is proposed based on high-resolution transmission electron microscopy (HRTEM) investigations. Control of the polarity of GaN/sapphire films was achieved by suppressing the formation of IDBs with an interlayer of AlGaN and a low-temperature GaN buffer layer.  相似文献   

12.
研究了在GaAs(111)衬底上生长的六角相GaN的极性的相关关系.在高Ⅴ/Ⅲ比的条件下用MOVPE和MOMBE方法生长的GaN的极性和GaAs衬底的极性一致;在(111)A-Ga表面上的生长层呈现Ga的极性,而在(111)B-As表面上的生长层呈现N的极性.然而,在低的Ⅴ/Ⅲ比,或采用一个AIN中间层的条件下,用HVPE和MOMBE方法在GaAs(111)B表面上生长的GaN呈现出Ga的极性.目前,其原因尚不清楚,但是这些结果表明采用HVPE生长方法或用一高温AlN阻挡层可以得到高质量的GaN.  相似文献   

13.
We discuss the role of the Al interlayer in the suppression of pinhole formations and also look at the polarity transition of the AlN layers from N-polarity to Al-polarity when this Al interlayer is present. The AlN layers were grown by molecular beam epitaxy on an AlN nucleation layer. A thin Al interlayer was deposited on the initial nucleated AlN layer after the nitridation of the Al-soaked Si (111) substrates. The AlN layer with an Al interlayer showed a relatively smooth surface with a reduced density of pinholes compared with the AlN layer grown without an Al interlayer. In addition, the AlN layer with an Al interlayer showed some stacking faults in the interface between the Si substrate and the A1N layer. We also identify the polarity change of the AlN layer after the insertion of a thin Al interlayer from N-polarity to Al-polarity by chemical etching. A simple model is constructed to explain the polarity change and the pinhole suppression due to the Al interlayer.  相似文献   

14.
本文报道了用低压MOVPE和RF-分子束外延法在蓝宝石衬底上作极性控制的GaN生长.以“双Al单层”模型讨论了用MOVPE和MBE法在蓝宝石衬底上生长GaN的极性选择的机理,并对AlN在极性转换过程中的作用给出了适当的解释.通过极性控制的生长,使MBE法生长的GaN的表面形貌和电学特性都得到了改善;并对LP-MOVPE生长开发出了一种“三步生长法”,这样就可以用更多的外延方式在蓝宝石衬底上生长出高质量的GaN膜.  相似文献   

15.
The conditions to grow GaN quantum dots (QDs) by plasma-assisted molecular beam epitaxy will be examined. It will be shown that, depending on the Ga/N ratio value, the growth mode of GaN deposited on AlN can be either of the Stranski–Krastanow (SK) or of the Frank–Van der Merwe type. Accordingly, quantum wells or QDs can be grown, depending on the desired application. In the particular case of modified SK growth mode, it will be shown that both plastic and elastic strain relaxation can coexist. Growth of GaN QDs with N-polarity will also be discussed and compared to their counterpart with Ga polarity.  相似文献   

16.
氮化铝单晶薄膜的ECR PEMOCVD低温生长研究   总被引:10,自引:0,他引:10       下载免费PDF全文
秦福文  顾彪  徐茵  杨大智 《物理学报》2003,52(5):1240-1244
采用电子回旋共振等离子体增强金属有机物化学气相沉积(ECR-PEMOCVD)技术,在c轴取向的蓝宝石即α Al2O3(0001)衬底上,以氮化镓(GaN)缓冲层和外延层作为初始层,分别以高纯氮气(N2)和三甲基铝(TMAl)为氮源和铝源低温生长氮化铝(AlN)薄膜.并利用反射高能电子衍射(RHEED)、原子力显微镜(AFM)和x射线衍射(XRD)等测量结果,研究了氢等离子体清洗、氮化和GaN初始层对六方AlN外延层质量的影响,从而获得解理性与α Al2O3衬底一致的六方相AlN单晶薄膜,其XRD半高宽为1 关键词: AlN 氢等离子体清洗 氮化 GaN  相似文献   

17.
Unintentionally doped high-Al-content Al0.45Ga0.55N/GaN high electron mobility transistor (HEMT) structures with and without AlN interfacial layer were grown by metal-organic chemical vapor deposition (MOCVD) on two-inch sapphire substrates. The effects of AlN interfacial layer on the electrical properties were investigated. At 300 K, high two-dimensional electron gas (2DEG) density of 1.66 × 1013 cm−2 and high electron mobility of 1346 cm2 V−1 s−1 were obtained for the high Al content HEMT structure with a 1 nm AlN interfacial layer, consistent with the low average sheet resistance of 287 Ω/sq. The comparison of HEMT wafers with and without AlN interfacial layer shows that high Al content AlGaN/AlN/GaN heterostructures are potential in improving the electrical properties of HEMT structures and the device performances.  相似文献   

18.
ABSTRACT

In this work, we investigated the deposition of AlN film on GaN substrate by using molecular dynamics (MD) simulations. The effects of GaN substrate surface, growth temperature, and injected N: Al flux ratio on the growth of AlN film were simulated and studied. Consequently, the deposited AlN film on the (0001) Ga-terminated GaN surface achieves better surface morphology and crystallinity than that on the (000-1) N-terminated GaN surface due to the different diffusion ability of Al and N adatoms on two GaN surfaces. Furthermore, with the increase of growth temperature, the surface morphology and crystallinity of AlN film were improved owing to the enhanced mobility of adatoms. At the optimised injected N: Al flux ratio of 1, comparatively good surface morphology and crystallinity of deposited AlN films were realised. This method lays a foundation for the follow-up real-time study of defects and stress evolution of AlN on GaN and can be applied to film growth of other materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号