首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thick GaN films of high quality are directly grown on wet-etching patterned sapphire in a vertical hydride vapour phase epitaxy reactor. The optical and structural properties of GaN films are studied using scanning electronic microscopy and cathodoluminescence. Test results show that initial growth of hydride vapour phase epitaxy GaN occurs not only on the mesas but also on the two asymmetric sidewalls of the V-shaped grooves without selectivity. After the two-step coalescence near the interface, the GaN films near the surface keep on growing along the direction perpendicular to the long sidewall. Based on Raman results, GaN of the coalescence region in the grooves has the maximum residual stress and poor crystalline quality over the whole GaN film, and the coalescence process can release the stress. Therefore, stress-free thick GaN films are prepared with smooth and crack-free surfaces by this particular growth mode on wet-etching patterned sapphire substrates.  相似文献   

2.
Novel Raman scattering in polar semiconductor SiC and TaC one-dimensional materials have been carried out. With increasing incident laser wavelength from 488 to 633 nm there is a huge difference in Raman intensity enhancement for the LO/IF peaks and the TO peak. This has been interpreted as due to Fröhlich interaction and abundant defects in polar nano-scale semiconductor materials.  相似文献   

3.
We report the reduced-strain gallium-nitride (GaN) epitaxial growth on (0001) oriented sapphire by using quasiporous GaN template. A GaN film in thickness of about 1 μm was initially grown on a (0001) sapphire substrate by molecular beam epitaxy. Then it was dealt by putting into 45% NaOH solution at 100℃ for lOmin. By this process a quasi-porous GaN film was formed. An epitaxial GaN layer was grown on the porous GaN layer at 1050℃ in the hydride vapour phase epitaxy reactor. The epitaxial layer grown on the porous GaN is found to have no cracks on the surface. That is much improved from many cracks on the surface of the GaN epitaxial layer grown on the sapphire as the same as on GaN buffer directly.  相似文献   

4.
Large-scale GaN free-standing substrate was obtained by hydride vapor phase epitaxy directly on sapphire with porous network interlayer. The bottom surface N-face and top surface Ga-face showed great difference in anti-etching and optical properties. The variation of optical and structure characteristics were also microscopically identified using spatially resolved cathodoluminescence and micro-Raman spectroscopy in cross-section of the GaN substrate. Three different regions were separated according to luminescent intensity along the film growth orientation. Some tapered inversion domains with high free carrier concentration of 5 × 1019 cm−3 protruded up to the surface forming the hexagonal pits. The dark region of upper layer showed good crystalline quality with narrow donor bound exciton peak and low free carrier concentration. Unlike the exponential dependence of the strain distribution, the free-standing GaN substrate revealed a gradual increase of the strain mainly within the near N-polar side region with a thickness of about 50 μm, then almost kept constant to the top surface.  相似文献   

5.
Molecular vibrations of the polycrystalline Nd2−xSrxCoO4 are systematically characterized by powdered x-ray diffraction, Raman scattering and infrared spectra at different dopings as well as at different temperatures. Structural refinements reveal that all the specimens crystallize in the K2NiF4 structure with space group I4/mmm as is also confirmed by the phonon bands of Raman scattering and infrared transmittance. The frequency shifts of the phonon bands are found to be very well consistent with the elongation and/or contraction of the bond lengths. Moreover, for Nd0.75Sr1.25CoO4, the phonon bands of the Raman active modes seem to retrace the evolutions of magnetic and structural temperature.  相似文献   

6.
By using the special maskless V-grooved c-plane sapphire as the substrate, we previously developed a novel GaN LEO method, or the so-called canti-bridge epitaxy (CBE), and consequently wing-tilt-free GaN films were obtained with low dislocation densities, with which all the conventional difficulties can be overcome [J. Vacuum Sci. Technol. B 23 (2005) 2476]. Here the evolution manner of dlslocations in the CBE GaN films is investigated using transmission electron microscopy. The mechanisms of dislocation reduction are discussed. Dislocation behaviour is found to be similar to that in the conventional LEO GaN films except the enhanced dislocation-combination at the coalescence boundary that is a major dislocation-reduction mechanism for the bent horizontal-propagating dislocations in the CBE GaN films. The enhancement of this dislocation-combination probability is believed to result from the inclined shape and the undulate morphology of the sidewalls, which can be readily obtained in a wide range of applicable film-growth conditions during the GaN CBE process. Further development of the GaN CBE method and better crystal-quality of the GaN film both are expected.  相似文献   

7.
Si‐doped aluminum nitride layers show a shift of the near‐band‐edge luminescence at around 6 eV to lower energies for increasing Si concentration up to ≈(1–3) × 1019 cm–3. For higher concentrations, the luminescence shifts back to higher energies. This behavior is compared to concomitant shifts of the Raman‐active E2 vibrational mode and to X‐ray diffraction data. It can be explained in terms of increasing tensile strain which finally relaxes due to the formation of cracks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
GaN nanorods were grown on c-plane sapphire substrates by using catalyst-free hydride vapor phase epitaxy (HVPE). The effects of substrate temperature, Ga boat temperature, and Ga pretreatment on the surface morphology of GaN nanorods were investigated. From the dependence of a radial and axial growth rate on the substrate temperature, the kinetically limited process was found to be a rate determining step in the growth of GaN nanorods in HVPE. In addition, the activation energy of the growth along the both axial and radial directions were estimated. The dependence of a Ga boat temperature and the Ga pretreatment effect revealed that the density of nanorods were dependent on the flux of Ga species on the substrate.  相似文献   

9.
Aluminium nitride (AlN) films grown with dimethylethylamine alane (DMEAA) are compared with the ones grown with trimethylaluminium (TMA). In the high-resolution x-ray diffraction Ω scans, the full width at half maximum (FWHM) of (0002) AlN films grown with DMEAA is about 0.70 deg, while the FWHM of (0002) AlN films grown with TMA is only 0.11 deg. The surface morphologies of the films are different, and the rms roughnesses of the surface are approximately identical. The rms roughness of AlN films grown with DMEAA is 47.4nm, and grown with TMA is 69.4nm. Although using DMEAA as the aluminium precursor cannot improve the AlN crystal quality, AlN growth can be reached at low temperature of 673K. Thus, DMEAA is an alternative aluminium precursor to deposit AlN film at low growth temperatures.  相似文献   

10.
The influence of reactor pressure on GaN layers grown by hydride vapour phase epitaxy (HVPE) is investigated. By decreasing the reactor pressure from0. 7 to 0.5 mm, the GaN layer growth mode changes from the island-like one to the step flow. The improvements in structural and optical properties and surface morphology of GaN layers are observed in the step flow growth mode. The results clearly indicate that the reactor pressure, similarly to the growth temperature, is One of the important parameters to influence the qualities of GaN epilayers grown by HVPE, due to the change of growth mode.  相似文献   

11.
We investigate effects of nitridation on AlN morphology, structural properties and stress. It is found that 3min nitridation can prominently improve AlN crystal structure, and slightly smooth the surface morphology. However, 10min nitridation degrades out-of-plane crystal structure and surface morphology instead. Additionally, 3-min nitridation introduces more tensile stress (1.5 GPa) in AlN films, which can be attributed to the weaker islands 2D coalescent. Nitridation for lOmin can introduce more defects, or even forms polycrystallinity interlayer, which relaxes the stress. Thus, the stress in AlN with 10 min nitridation decreases to -0.2 GPa compressive stress.  相似文献   

12.
Thermal silicon oxide layers have been implanted at 600 °C with N++C+, N++B+ and N++C++B+ ions. Two different implantation doses have been chosen in order to introduce peak concentrations at the projected range comparable to the SiO2 density. Some pieces of the samples have been annealed in conventional furnace at 1200 °C for 3 h. After annealing, cathodoluminescence measurements show in all cases a main broad band centered at 460 nm (2.7 eV). High doses of C implantation give rise to an intensity attenuation. Phases formed in the oxides have been investigated by Fourier transform infrared spectroscopy before and after annealing. The spectra suggest that N incorporates as BN and probably as a ternary BCN phase in the triply implanted samples, while C seems to bond mainly with B. Boron is also bonded to O in B-O-Si configuration. Depth structure and quantitative composition of the films were deduced from fittings of the spectroscopic ellipsometry measurements.  相似文献   

13.
By using compositionally graded SiGe films as virtual substrates, tensile strained Si films with the strain of 1.5% and the threading dislocation density less than 1.0 × 10^5 cm-2 are successfully grown in micron size windows by molecular beam epitaxy (MBE). The thickness of the virtual substrates was only 33Onto. On the surface of the s-Si films no cross-hatched lines resulting from misfit dislocations could be observed. We attribute these results to the edge-induced strain relaxation of the epitaxial films in windows, and the patterned virtual substrates with compositionally graded SiGe films.  相似文献   

14.
Lead zinc niobate-lead titanate[(1−x)Pb(Zn1/3Nb2/3)O3-xPbTiO3] (PZN-PT) crystals with x=4.5% and x=12% have been investigated using dielectric and Raman measurements over a range of temperatures. Above room temperature, dielectric measurements show that both compositions exhibit structural phase transitions according to the phase diagram proposed by Kuwata et al. [Ferroelectrics 387 (1981) 579]. Below room temperature, an anomaly at around 180 K for the x=12% sample is observed, suggesting another phase transition. Raman measurements are used to study all phase transitions.  相似文献   

15.
A 5.35-μm-thick ZnO film is grown by chemical vapour deposition technique on a sapphire (0001) substrate with a GaN buffer layer. The surface of the ZnO film is smooth and shows many hexagonal features. The full width at half maximum of ZnO (0002) u-rocking curve is 161 arcsec, corresponding to a high crystal quality of the ZnO film. From the result of x-ray diffraction 0 - 20 scanning, the stress status in ZnO film is tensile, which is supported by Raman scattering measurement. The reason of the tensile stress in the ZnO film is analysed in detail. The lattice mismatch and thermal mismatch are excluded and the reason is attributed to the coalescence of grains or islands during the growth of the ZnO film.  相似文献   

16.
ZnO nanorods and nanotubes are successful synthesized on A1N/sapphire substrates by metal-organic chemical vapour deposition (MOGVD). The different morphology and structure properties of ZnO nanorods and nanotubes are found to be affected by the A1N under-layer. The photoluminescence spectra show the optical properties of the ZnO nanorods and nanotubes, in which a blueshift of UV emission is observed and is attributed to the surface effect.[第一段]  相似文献   

17.
InGaN/GaN multiple quantum wells (MQWs) are grown on planar and maskless periodically grooved sapphires by metal organic vapour phase epitaxy (MOCVD). High-resolution x-ray rocking curves and transmission electron microscopy (TEM) are adopted to characterize the film quality. Compared with the MQWs grown on planar sapphire, the sample grown on grooved sapphire shows better crystalline quality: a remarkable reduction of dislocation densities is achieved. Meanwhile, the MQWs grown on grooved sapphire show two times larger PL intensity at room temperature. Temperature-dependent PL measurements are adopted to investigate the luminescence properties. The luminescence thermal quenching based on a fit to the Arrhenius plot of the normalized integrated PL intensity over the measured temperature range suggests that the nonradiative recombination centres (NRCs) are greatly reduced for the sample grown on grooved sapphire. We assume that the reduction of dislocations which act as NRCs is the main reason for the sample grown on pattern sapphire having higher PL intensity.  相似文献   

18.
Canti-bridged epitaxial lateral overgrowth (CBELO) of GaN is performed by metalorganic chemical vapour deposition (MOCVD) on maskless V-grooved sapphire substrates prepared by wet chemical etching with different mesa widths. The wing tilt usually observed in ELO is not found in the CBELO GaN with wide mesa widths, while it can be detected obviously in the GaN with narrow mesa widths. The wing tilt of CBELO GaN grown on a grooved sapphire substrate with narrow mesa can be controlled by adjusting the thickness of the nucleation layer. The dependence of the wing tilt on the nucleation layer thickness is studied. Cross-sectional scanning electron microscopy is used to characterize the geometry of the wing regions, and double crystal x-ray diffraction is used to analyse the structural characteristics and to measure the magnitude of the crystalline wing tilt. It is found that the crystalline wing tilt can be eliminated completely by first growth of a thin nucleation GaN layer then the CBELO GaN. Possible reason and the origin of the wing tilt in CBELO GaN films are also discussed.  相似文献   

19.
Several non-polar a-plane GaN films had been grown by hydride vapor phase epitaxy (HVPE) on different designed metal organic chemical deposition (MOCVD) GaN templates, which exhibited various ridge-like sidewall facets surface morphologies. The templates induced a lateral growth at the early stage of the HVPE growth, and resulted in a kind of maskless epitaxy lateral overgrown (ELO) process. It is found that the dislocation reduced differently along [1 0 0 0] and [] directions in these HVPE a-plane GaN layers. In [0 0 0 1] direction, the dislocation reduction resulted from the optimal surface roughness value of the template. In [] direction, the inclined facet might be a main factor for the dislocation reduction in HVPE-GaN films. The maskless ELO process had a significant influence on decreasing the dislocation density.  相似文献   

20.
MOCVD生长GaN:Si单晶膜的研究   总被引:4,自引:0,他引:4  
获得高质量的n型GaN单晶膜是制作GaN基光电子器件的关键之一。采用立式MOCVD系统生长GaN:Si单晶膜,通过优化生长工艺,获得了电子载流于浓度高达2 ×1019cm-3,迁移率达120cm2/V·s的n型GaN:Si单晶膜;并有效地抑制了GaN中由深能级引起的黄带发射,大大提高带边发光强度。研究结果还表明:随着S掺杂量的增大,GaN:Si单晶膜的电子载流于浓度增加,迁移率下降,X光双晶衍射峰半高宽增大。首次报道了随掺S量增大,GaN:Si单晶膜的生长速率显著下降的现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号