首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
ZrxCu100-x amorphous films are prepared on Si (111) substrates by magnetron co-sputtering of pure Zr and Cu. It is found that the glass forming ability (GFA) of the films increases with x when x is in the range from 35 to 65 and with the best glass forming ability at x = 65. It is therefore different from the bulk counterparts, for which only x = 35 and 50 were reported to have high glass forming ability during casting. The structure of the films is sensitive to the substrate temperature and the sputtering argon pressure.  相似文献   

2.
Highly c-axis oriented un-doped zinc oxide(Zn O) thin films, each with a thickness of ~ 100 nm, are deposited on Si(001) substrates by pulsed electron beam deposition at a temperature of ~ 320℃, followed by annealing at 650℃ in argon in a strong magnetic field. X-ray photoelectron spectroscopy(XPS), positron annihilation analysis(PAS), and electron paramagnetic resonance(EPR) characterizations suggest that the major defects generated in these Zn O films are oxygen vacancies. Photoluminescence(PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped Zn O film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the Zn O films are also discussed.  相似文献   

3.
The Co-doped TiO2 films (Co0.1Ti0.9O2-δ) are prepared on silicon substrates by sol-gel method and post annealing. TheCo0.1Ti0.9O2-δ film annealed in air is non-ferromagnetic at room temperature. After further annealed in a vacuum, the room-temperature ferromagnetism (RTFM) is observed. Experimental evidences show that the RTFM in the Co0.1Ti0.9O2-δ film may come from the Co-doped TiO2 matrix and is related to the oxygen vacancies created by vacuum annealing.  相似文献   

4.
ZnO films doped with different vanadium concentrations are deposited onto glass substrates by dc reactive magnetron sputtering using a zinc target doped with vanadium. The vanadium concentrations are examined by energy dispersive spectroscopy (EDS) and the charge state of vanadium in ZnO thin films is characterized by x-ray photoelectron spectroscopy. The results of x-ray diffraction (XRD) show that all the films have a wurtzite structure and grow mainly in the c-axis orientation. The grain size and residual stress in the deposited films are estimated by fitting the XRD results. The optical properties of the films are studied by measuring the transmittance. The optical constants (refractive index and extinction coefficient) and the film thickness are obtained by fitting the transmittance. All the results are discussed in relation with the doping of the vanadium.  相似文献   

5.
Nitrogen doping of silver oxide(AgxO) film is necessary for its application in transparent conductive film and diodes because intrinsic AgxO film is a p-type semiconductor with poor conductivity.In this work,a series of AgxO films is deposited on glass substrates by direct-current magnetron reactive sputtering at different flow ratios(FRs) of nitrogen to O2.Evolutions of the structure,the reflectivity,and the transmissivity of the film are studied by X-ray diffractometry and sphectrophotometry,respectively.The specular transmissivity and the specular reflectivity of the film decreasing with FR increasing can be attributed to the evolution of the phase structure of the film.The nitrogen does not play the role of an acceptor dopant in the film deposition.  相似文献   

6.
Herein we report the room-temperature epitaxial growth of V2O3 films by laser molecule beam epitaxy. X-ray diffraction profiles show the room-temperature epitaxial V2O3 films orient in the [110] direction on α-Al2O3(0001) substrates. Atomic force microscopy measurements reveal that the ultra-smooth surfaces with root-mean-square surface roughness of 0.11 nm and 0.28 nm for 10-nm-thick and 35-nm-thick V+2O3 film, respectively. X-ray photoelectron spectroscopy results indicate the V3 oxidation state in the films. Typical metal-insulator transition is observed in films at about 135 K. The resistivities at 300 K are approximately 0.8 mΩ cm and 0.5 mΩ cm for 10-nm-thick and 35-nm-thick V2O3 film, respectively.  相似文献   

7.
Buffer layer provides an opportunity to enhance the quality of ultrathin magnetic films.In this paper,Co films with different thickness of Co Si2buffer layers were grown on Si(001)substrates.In order to investigate morphology,structure,and magnetic properties of films,scanning tunneling microscope(STM),low energy electron diffraction(LEED),high resolution transmission electron microscopy(HRTEM),and surface magneto-optical Kerr effect(SMOKE)were used.The results show that the crystal quality and magnetic anisotropies of the Co films are strongly affected by the thickness of Co Si2buffer layers.Few Co Si2monolayers can prevent the interdiffusion of Si substrate and Co film and enhance the Co film quality.Furthermore,the in-plane magnetic anisotropy of Co film with optimal buffer layer shows four-fold symmetry and exhibits the two-jumps of magnetization reversal process,which is the typical phenomenon in cubic(001)films.  相似文献   

8.
Single crystalline silicon films are transferred on to a glass substrate by the smart-cut technique,which is based on H^ ions implantation,anodic bonding and layer transfer,Structures of the resulting thin film silicon on galss(SOG) are characterized by transmission-electron microscopy,scanning electron microscopy and Raman spectroscopy.The results show that SOG substrates fabricated by the smart-cut have advantages of steep top Si/glass interface and good monocrystalline Si quality.The Hall-effect measurement indicates that the single crystalline SOG substrates have a better electrical property compared with polycrystalline silicon SOG substrates.  相似文献   

9.
We fabricate Fe3O4 thin films on Si(100) substrates at different temperatures using pulsed laser deposition, and study the effect of annealing and deposition temperature on the structural and magnetic properties of Fe3O4 thin films. Subsequently, the films are characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometery (VSM). The XRD results of these films confirm the presence of the Fe3O4 phase and show room-temperature ferromagnetism, as observed with VSM. We demonstrate the optimized deposition and annealing conditions for an enhanced magnetization of 854 emu/cm3 that is very high when compared to the bulk sample.  相似文献   

10.
By repeatedly pre-cleaning the sputtering chamber with Ar gas and in-situ isochronal annealing samples, NiSi films are successfully prepared on Si (100) substrates in a radio-frequency magnetron sputtering system. A comparison between the obtained NiSi and excess oxygen-contaminated Ni/Si films has been performed by EDX analysis of oxygen atomic content in both the films. Focused ion beam milling technology is employed to make the cross-sections of the samples for characterizing the NiSi film thickness and NiSi/Si interface roughness. The influences of nickel film thickness on the NiSi-film morphology and on the NiSi/Si interface roughness are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号