首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
李宏  ;王东宁 《中国物理快报》2008,25(11):3864-3866
The dynamics of dark soliton in a growing Bose-Einstein condensate with an external magnetic trap are investigated by the variational approach based on the renormalized integrals of motion. The stationary states as physical solutions to the describing equation are obtained, and the evolution of the dark soliton is numerically simulated. The numerical results confirm the theoretical analysis and show that the dynamics depend strictly on the initial condition, the gain coefficient and the external potential.  相似文献   

2.
We analytically study the interaction characteristics of two bright solitons in a one-dimensional growing Bose- Einstein condensate with time-dependent periodic atomic scattering length. It is shown that the interaction between two bright solitons can generate fission and fusion in the presence of both time-dependent periodic atomic scattering length and the growing case. Furthermore, we propose experimental protocols to realize these interaction phenomena by varying the scattering length via the Feshbach resonance in the future experiment.  相似文献   

3.
李宏  WANG  D.  N. 《中国物理快报》2007,24(4):871-873
Two coupled dark solitons are considered in a two-component Bose-Einstein condensate, and their dynamics are investigated by the variational approach based the renormalized integrals of motion. The stationary states as physical solutions to the describing equations are obtained, and the dynamic mechanism is demonstrated by performing a coordinate of a classical particle moving in an effective potential field. The switching and selftrapping dynamics of the coupled dark vector solitons are discussed by the evolution of the atom population transferring ratio.  相似文献   

4.
We have shown that the application of modulating the secondary lattice is an efficient route to suppressing the generation of chaotic traveling waves of a Bose-Einstein Condensate with attractive interatomic interaction loaded into a moving optical superlattiee consisting of two lattices. With the Melnikov method, we obtain the optimal value of the relative phase between the two lattice harmonics for the control of chaos. We also find that the regularization route as the potential depth of the secondary lattice is varied and fairly rich, including the period-doubling bifurcations.  相似文献   

5.
A model of the perturbed complex Toda chain (PCTC) to describe the dynamics of a Bose-Einstein condensate (BEC) N-soliton train trapped in an applied combined external potential consisting of both a weak harmonic and tilted periodic component is first developed. Using the developed theory, the BEC N-soliton train dynamics is shown to be well approximated by 4N coupled nonlinear differential equations, which describe the fundamental interactions in the system arising from the interplay of amplitude, velocity, centre-of-mass position, and phase. The simplified analytic theory allows for an efficient and convenient method for characterizing the BEC N-soliton train behaviour. It further gives the critical values of the strength of the potential for which one or more localized states can be extracted from a soliton train and demonstrates that the BEC N-soliton train can move selectively from one lattice site to another by simply manipulating the strength of the potential.  相似文献   

6.
The spatial chaos probability of a Bose-Einstein condensate perturbed by a weak optical superlattice is studied. It is demonstrated that the spatial. chaotic solution appears with a certain probability in a given parameter region under a random boundary condition. The effects of the lattice depths and wave vectors on the chaos probability are illustrated, and different regions associated with different chaos probabilities are found. This suggests a feasible scheme for suppressing and strengthening chaos by adjusting the optical superlattice experimentaJly.  相似文献   

7.
We present analytical solutions of the one-dimensional nonlinear Schrodinger equations of Bose-Einstein condensates in an expulsive parabolic background with a complex potential and gravitational field, by performing the Darboux transformation from a trivial seed solution. It is shown that under a safe range of parameter, the shape of bright soliton can be controlled well by adjusting the experimental parameter of the ratio of axial oscillation to radial oscillation and feeding condensates from a thermal cloud. The gravitational field can change the contrail of the bright soliton trains without changing their peak and width.  相似文献   

8.
In this Letter we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is completely integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 98 (2007) 074102]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schrödinger equation. By this transformation, each exact solution of the standard nonlinear Schrödinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitons and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique.  相似文献   

9.
The Josephson equations for a Bose Einstein Condensate gas trapped in a double-well potential are derived with the two-mode approximation by the Gross Pitaevskii equation. The dynamical characteristics of the equations are obtained by the numerical phase diagrams. The nonlinear self-trapping effect appeared in the phase diagrams are emphatically discussed, and the condition EcN 〉 4E3 is presented.  相似文献   

10.
吴雷  张解放 《中国物理快报》2007,24(6):1471-1474
The modulational instability of Bose-Einstein condensate with three-body interatomic interaction and external harmonic trapping potential is investigated. Both of our analytical and numerical results show that the external potential will either cause the excitation of modulationally unstable modes or restrain the modulationally unstable modes from growing.  相似文献   

11.
Spatial chaos of a Bose Einstein condensate perturbed by a weak laser standing wave and a weak laser δ pulse is studied. By using the perturbed chaotic solution we investigate the new type of Melnikov chaotic regions, which depend on an integration constant co determined by the boundary conditions. It is shown that when the │co│ values are small, the chaotic region corresponds to small values of laser wave vector k, and the chaotic region for the larger h values is related to the large │co│ values. The result is confirmed numerically by finding the chaotic and regular orbits on the Poincarg section for the two different parameter regions. Thus, for a fixed co the adjustment of k from a small value to large value can transform the chaotic region into the regular one or on the contrary, which suggests a feasible method for eliminating or generating Melnikov chaos.  相似文献   

12.
We present an analytical study on the dynamics of bright and dark solitons in Bose-Einstein condensates with time-varying atomic scattering length in a time-varying external parabolic potential. A set of exact soliton solutions of the one-dimensional Gross-Pitaevskii equation are obtained, including fundamental bright solitons, higher-order bright solitons, and dark solitons. The results show that the soliton's parameters (amplitude, width, and period) can be changed in a controllable manner by changing the scattering length and external potential. This may be helpful to design experiments.  相似文献   

13.
By developing the multiple scales method, we analytically study the dynamics properties of gap soliton of Bose- Einstein condensate in optical lattices. It is shown that the gap soliton will appear at Brillouin zone edge of linear band spectrum of the condensates when the interatomic interaction strength is larger than the lattice depth. Moreover, the density of gap soliton starts to be relatively small, while it increases with time and becomes stable.  相似文献   

14.
张剑  郑法伟 《中国物理快报》2008,25(8):2778-2781
We investigate collective excitations of a Bose Einstein repulsive interactions, and analytically demonstrate that condensate in the presence of temporal modulation of the modulated interaction can drive the condensate to oscillate with the external modulation frequency, and that the interaction couples with the eigen modes of the condensate collective excitations, which was previously considered to be independent of interaction. When the external modulation frequency approaches or is far away from the eigen frequency of the density monopole mode, the condensate shows resonant or beating behaviour.  相似文献   

15.
The interference pattern generated by the merging interaction of two Bose-Einstein condensates reveals the coherent, quantum wave nature of matter. An asymptotic analysis of the nonlinear Schrödinger equation in the small dispersion (semiclassical) limit, experimental results, and three-dimensional numerical simulations show that this interference pattern can be interpreted as a modulated soliton train generated by the interaction of two rarefaction waves propagating through the vacuum. The soliton train is shown to emerge from a linear, trigonometric interference pattern and is found by use of the Whitham modulation theory for nonlinear waves. This dispersive hydrodynamic perspective offers a new viewpoint on the mechanism driving matter-wave interference.  相似文献   

16.
Two non-isospectral generalized nonlinear Schrodinger (ONLS) equations, which are two important models of nonlinear excitations of matter waves in Bose-Einstein condensates, are studied. Two novel transformations are constructed such that these two GNLS equations are transformed to the well-known nonlinear Schr6dinger (NLS) equation, which is an isospectral equation. Therefore, once one solution of the NLS equation is provided, we can immediately obtain one solution for two ONLS equations by these transformations. Thus it is unnecessary to solve these two non-isospectral GNLS equations directly. Soliton solutions and periodic solutions are obtained for them by two transformations from the corresponding solutions of the NLS equation, which are generated by Darboux transformation.  相似文献   

17.
We consider a dynamical model for a Fermi gas in the Bardeen-Cooper-Schrieffer (BCS) superfluid state, trapped in a combination of a 1D or 2D optical lattice (OL) and a tight parabolic potential, acting in the transverse direction(s). The model is based on an equation for the order parameter (wave function), which is derived from the energy density for the weakly coupled BCS superfluid. The equation includes a nonlinear self-repulsive term of power 7/3, which accounts for the Fermi pressure. Reducing the equation to the 1D or 2D form, we construct families of stable 1D and 2D gap solitons (GSs) by means of numerical simulations, which are guided by the variational approximation (VA). The GSs are, chiefly, compact objects trapped in a single cell of the OL potential. In the linear limit, the VA predicts almost exact positions of narrow Bloch bands that separate the semi-infinite and first finite gaps, as well as the first and second finite ones. Families of stable even and odd bound states of 1D GSs are constructed, too. We also demonstrate that the GS can be dragged without much distortion by an OL moving at a moderate velocity (, in physical units). The predicted GSs contain ∼103-104 and ∼103 atoms per 1D and 2D settings, respectively.  相似文献   

18.
In this introductory survey, we give an overview of the main physical problems and corresponding themes of research addressed in this Special Issue. We also briefly discuss some avenues of potential interest for future research in degenerate quantum gases.  相似文献   

19.
With the help of a set of exact closed-form solutions to the stationary Gross Pitaevskii equation, we compre-hensively investigate Landau and dynamical instabilities of a Bose-Einstein condensate in a periodic array of quantum wells. In the tight-binding limit, the anaiyticai expressions for both Landau and dynamical instabilities are obtained in terms of the compressibility and effective mass of the BEC system. Then the stability phase diagrams are shown to be similar to the one in the case of the sinusoidal optical lattice.  相似文献   

20.
We discuss the possible nonlinear waves of atomic matter wave in a Bose-Einstein condensate. One and two of two-dimensional (2D) dark solitons in the Bose-Einstein condensed system are investigated. A rich dynamics is studied for the interactions between two solitons. The interaction profiles of two solitons are greatly different if the angle between them are different. If the angle is small enough, the maximum amplitude during the interaction between two solitons is even less than that of a single soliton. However, if the angle is large enough, the maximum amplitude of two solitons can gradually attend to the sum of two soliton amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号