首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the guided waves in a multi-layered cylindrical elastic solid medium. The dispersion function of guided waves is usually complex and the dispersion curves of all modes are not conveniently obtained. Here we present an effective method to obtain the dispersion curves of all modes. First, the dispersion function of the guided waves is transformed into a real function. The dispersion curves are then calculated for all the modes of the guided waves by the bisection method. The modes with the orders n = 0, 1, and 2 are analysed in two- and three-layer media. The existence condition of Stoneley wave is discussed. The modes of the guided waves are also investigated in a two-layer medium, in which the velocity of shear wave in the outer layer is less than that in the inner layer.  相似文献   

2.
It is weft known that Lamb waves in a plate with a mirror plane can be separated into two uncoupled sets: symmetric and anti-symmetric modes. Based on this property, we present a revised plane wave expansion method (PWE) to calculate the band structure of a phononie crystal (PC) plate with a mirror plane. The developed PWE method can be used to calculate the band structure of symmetric and anti-symmetric modes separately, by which the depending relationship between the partial acoustic band gap (PABG), which belongs to the symmetric and anti-symmetric modes alternatively, and the position of the scatterers can be determined. As an example of its application, the band structure of the Lamb modes in a two-dimensional PC plate with two layers of void circular inclusions is investigated. The results show that the band structure for the symmetric and anti-symmetric modes can be changed by the position of the scatterers drastically, and larger PABGs will be opened when the scatterers are inserted into the area of the plate, where the elastic potential energy is concentrated.  相似文献   

3.
The perturbation method is employed to analyse the guided waves in a borehole surrounded by a cubic crystal medium for the first time. The cubic crystal medium is regarded as a reference unperturbed isotropic state added to the perturbation. The dispersion characteristics of Stoneley wave, pseudo-Rayleigh wave, flexural wave, and screw wave are investigated in detail. It is found that dispersion of the guided waves excited by monopole and dipole sources does not depend on the azimuth of the source, whereas the dispersion of screw wave excited by quadrupole source is significantly related to the azimuth of the source. Screw waves propagated along different azimuth in the borehole can be split. This is different from screw waves in transversely isotropic media (hexagonal crystal), which have been widely studied.  相似文献   

4.
Laser Generation of Surface Waves on Cylinder with a Slow Coating   总被引:1,自引:0,他引:1       下载免费PDF全文
An analytical model of acoustic field excited by a pulsed-laser line source on a coated cylinder is presented. Surface wave dispersive behaviours for a cylinder with a slow coating are analysed and compared with that of a bare cylinder. Based on this analysis, the laser-generated transient response of the perturbed Rayleigh wave and the higher modes of steel cylinder with a zinc coating are calculated from the model using residue theory and FFT technique. The theoretical result from the superposed waveform of the perturbed Rayleigh wave and higher modes agree well with the waveform obtained in experiment. The results show that the model and numerical method provide a useful technique for quantitatively characterizing coating parameters of coated cylinder by the laser generated surface waves.  相似文献   

5.
We develop an approach to homogenize three-dimensional periodic solid-solid elastic composites with cubic lattice at low frequencies, by using plane wave expansion and perturbation theory with respect to the long wavelength limit. Based on the fact that the two shear waves propagating along lattice axis are degenerated, we derive formulae for effective velocities parallel and normal to the lattice axis, from which three independent effective elastic moduli are calculated, respectively. Theoretical results, which take into account the multiple scattering and the structure of the periodic medium, are in good agreement with the previous isotropic theory at high-symmetry directions.  相似文献   

6.
A new one-dimensional phenomenological model based on the dynamic strain aging mechanism is developed. In order to account for the elastic shrinkage induced by the Portevin-Le Chatelier effect, elastic deformation is considered under the boundary conditions of the present model. The simulated results are found to be in good agreement with the experimental observations.  相似文献   

7.
A recent paper [A.A. Krokhin, J. Arriaga, L.N. Gumen, Speed of sound in periodic elastic composites, Phys. Rev. Lett. 91 (2004) 264302-1-4] addresses the speed of sound in periodic elastic composites (phononic crystals) with particular emphasis to the case where air bubbles are present in water and arranged periodically. In such periodically arranged mixtures, the well-known phenomena of the drop of the speed of sound may occur and applications related to, e.g., sound-beam focusing and acoustic surgery are possible [F. Cervera, L. Sanchez, J.V. Sanchez-Perez, R. Martinez-Sala, C. Rubio, F. Meseguer, C. Lopez, D. Caballero, J. Sanchez-Dehesa, Phys. Rev. Lett. 88 (2002) 023902]. In this paper, the analysis is extended theoretically to include cases where a background flow in a periodic structure is maintained. Calculations of dispersion relations and group velocities are presented in cases with one- and two-dimensional material periodicity for background flow values in the range: 0-1m/s. Materials considered in the calculations are periodic water-air mixtures. It is shown that acoustic waves couple to the group velocities only if the (acoustic) wave vector has a component along the background flow velocity direction.  相似文献   

8.
A.G. Ramm 《Physics letters. A》2008,372(17):3064-3070
Theory of wave scattering by many small bodies is developed under various assumptions concerning the ratio , where a is the characteristic dimension of a small body and d is the distance between neighboring bodies d=O(aκ1), 0<κ1<1. On the boundary Sm of every small body an impedance-type condition is assumed on Sm, 1?m?M, ζm=hmaκ, 0<κ, hm are constants independent of a. The behavior of the field in the region in which M=M(a)?1 small particles are embedded is studied as a→0 and M(a)→∞. Formulas for the refraction coefficient of the limiting medium are derived under the assumptions: (a) κ1=(2−κ)/3, 0<κ?1, and (b) κ1=1/3, κ>1. A method for creating materials with a desired refraction coefficient is proposed and justified theoretically on the basis of the above results.  相似文献   

9.
Jing Li  Zhengyou Liu 《Physics letters. A》2008,372(21):3861-3867
By using of the multiple scattering methods, we study the negative refraction imaging effect of solid acoustic waves by two-dimensional three-component phononic crystals composed of coated solid inclusions placed in solid matrix. We show that localized resonance mechanism brings on a group of flat single-mode bands in low-frequency region, which provides two equivalent frequency surfaces (EFS) close to circular. The two constant frequency surfaces correspond to two Bloch modes, a right-handed and a left-handed, whose leading mode are respectively transverse (T) and longitudinal (L) modes. The negative refraction behaviors of the two kinds of modes have been demonstrated by simulation of a Gaussian beam through a finite system. High-quality far-field imaging by a planar lens for transverse or longitudinal waves has been realized separately. This three-component phononic crystal may thus serve as a mode selector in negative refraction imaging of solid acoustic waves.  相似文献   

10.
This paper presents a combined finite element and modal decomposition method to study the interaction of Lamb waves with damaged area. The finite element mesh is used to describe the region around the defects. On the contrary to other hybrid models already developed, the interaction between Lamb waves and defects is computed in the temporal domain. Then, the modal decomposition method permits to determine the wave reflected and transmitted by the damaged area. Modal analysis allows also identifying the mode conversions induced by the defects. These numerical results agree with previous finite element results concerning the interaction of Lamb modes with a notch. Experiments, carried out with gauged defects on an aluminum plate, are also compared to numerical predictions to validate the simulation. Compared to classical techniques of simulation, this new method allows us to investigate the interaction of Lamb modes generated at high frequency-thickness product with micro-defects as corrosion pitting.  相似文献   

11.
Coupling of Acoustical Plane p-Wave to a Cased Borehole   总被引:1,自引:0,他引:1       下载免费PDF全文
Theoretical and numerical study on the coupling acoustic field of the plane p-wave to a cased borehole is carried out. The medium outside the cased borehole is modeled as the porous medium. The scattering field characteristics in the cased borehole are investigated when a plane fast p-wave is incident in tilt to the cased borehole from the porous medium. The scattering fields inside and outside the cased borehole are analyzed and deduced by Biot's theory under the boundary conditions on each interface, and they are numerically studied. It is found that the scattering field has strong resonant characteristics and there exists a series of resonant frequencies and peaks. The effects of the frequency, radii of each interface, incident angle, porosity, and other parameters on the resonant acoustic field have been investigated in detail in the fast and slow formations respectively. The resonant characteristics of the scattering field are also analyzed from the physical sense.  相似文献   

12.
A model for the propagation of nonlinear dispersive one-dimensional longitudinal strain waves in an isotropic solid with quadratic nonlinearity of elastic continuum is developed with taking into account the interaction with atomic defect clusters. The governing nonlinear dispersive-dissipative equation describing the evolution of longitudinal strain waves is derived. An approximate solution of the model equation was derived which describes asymmetrical distortion of geometry of the solitary strain wave due to the interaction between the strain field and the field of clusters. The contributions of the finiteness of the relaxation times of cluster-induced atomic defects to the linear elastic modulus and the lattice dissipation and dispersion parameters are determined. The amplitudes and width of the nonlinear waves depend on the elastic constants and on the properties of the defect subsystem (atomic defects, clusters) in the medium. The explicit expression is received for the sound velocity dependence upon the fractional cluster volume, which is in good agreement with experiment. The critical value of cluster volume fraction for the influence on the strain wave propagation is determined.  相似文献   

13.
We present a systematic study on the extraordinary resonant scattering in imperfect acoustic cloak by means of acoustic scattering theory. Analysis results demonstrate that the resonances are inevitable due to the perturbation to the ideal clo~k, and specific resonance modes are excited by specific order waves. The strength of resonance is determined by the magnitude of perturbation and each order wave's sensitivity to the perturbation. Further studies reveal the unique scattering characters of different resonance modes.  相似文献   

14.
The phonon-polariton behaviors of two-dimensional piezoelectric phononic crystals (PPCs) were studied using the plane wave expansion method. The governing equations combine Maxwell's equations and Newton's equations of motion. A mode-repulsion can be formed by strong coupling between electromagnetic (EM) waves and elastic waves in the vicinity of the center of the first Brillouin zone for PPC that comprises piezoelectric material and with opposite polarization in different periodically organized areas. Take a 2D ZnO PPC as a numerical example, it was decoupled into two independent groups. One refers to the mixed mode of the in-plane elastic waves and the transverse-magnetic (TM) mode EM waves. The other group refers to the mixed mode of the out-of-plane elastic waves and the transverse-electric (TE) mode EM waves. Coupling repulsion is also observed in these two groups.  相似文献   

15.
The elastic band structure of a two-dimensional phononic crystal containing piezoelectric material is investigated by the plane-wave-expansion method. Numerical results show that for large filling fraction, the full band gap of this kind of system is enlarged by considering the piezoelectric effect, but for small filling fraction, the influence of the piezoelectric effect is so small that it can be neglected.  相似文献   

16.
A.G. Ramm 《Physics letters. A》2008,372(23):4298-4306
A reduction of the Maxwell's system to a Fredholm second-kind integral equation with weakly singular kernel is given for electromagnetic (EM) wave scattering by one and many small bodies. This equation is solved asymptotically as the characteristic size of the bodies tends to zero. The technique developed is used for solving the many-body EM wave scattering problem by rigorously reducing it to solving linear algebraic systems, completely bypassing the usage of integral equations. An equation is derived for the effective field in the medium, in which many small particles are embedded. A method for creating a desired refraction coefficient is outlined.  相似文献   

17.
2 O3 and nanocrystalline Al2O3 specimens. The short-lifetime (170±20 ps), intermediate-lifetime (410±20 ps) and long-lifetime components correspond to three different kinds of defects: monovacancy-like free volumes, microvoids, and larger voids. The appearance of lifetimes in the range 1–5 ns indicates the formation of positronium. The influence of thermal annealing from 873 K to 1373 K on positron lifetime parameters was also analyzed. The components with lifetimes τ1=170 ps and τ2=410 ps persisted even after the grains had grown to 100 nm in size, while the long-lifetime component declined significantly when grain sizes exceeded 10 nm. The interface characteristics of polycrystalline nano-Al2O3 prepared by the two methods were compared by analyzing the variations of the positron-lifetime parameters with grain growth. Received: 1 April 1997/Accepted: 13 August 1997  相似文献   

18.
Imaging of defects in composite structures plays an important role in non-destructive testing (NDT) with elastic waves, i.e., ultrasound. Traditionally the imaging of such defects is performed using the synthetic aperture focusing technique (SAFT) algorithm assuming homogeneous isotropic materials. However, if parts of the structure are inhomogeneous and/or anisotropic, this algorithm fail to produce correct results that are needed in order to asses the lifetime of the part under test. Here we present a modification of this algorithm which enables a correct imaging of defects in inhomogeneous and/or anisotropic composite structures, whence it is termed InASAFT. The InASAFT is based on the exact modelling of the structure in order to account for the true nature of the elastic wave propagation using travel time ray tracing techniques. The algorithm is validated upon several numerical and real life examples yielding satisfactory results for imaging of cracks. The modified algorithm suffers, though, from the same difficulties encountered in the SAFT algorithm, namely “ghost” images and eventual lack of clear focused images. However, these artifacts can be identified using a forward wave propagation analysis of the structure.  相似文献   

19.
We extend the layer multiple-scattering theory (LMST) to elastic waves propagating in two-dimensional (2D) periodical composites. The formalism to calculate the reflection and transmission coefficients for elastic waves through finite slabs is presented. In this spirit, the crystal is viewed as a sequence of identical monolayer which has one-dimensional (1D) periodicity along a given direction. The reflection and transmission coefficients for a multilayer slab can be obtained by a double-layer scheme through the calculation of the scattering matrix of a monolayer. To demonstrate the application of this formalism, we calculate transmission coefficients for systems consisting of pure solid components or mixing (solid and fluid) components. The validity of this method is checked by both band structure calculations and transmission measurement of ultrasonic experiment.  相似文献   

20.
Ying Liu  Jia-yu Su 《Physics letters. A》2008,372(45):6784-6789
The phononic band structures of two-dimensional metal porous phononic crystals consisting of different lattices (the lattice structures transformed from square to triangle), and pores of various shapes (circle, square, and triangle) and sizes are studied numerically by using Finite Difference Time Domain (FDTD) scheme. It is found that for x-y mode waves, the absolute phononic band gaps (PBGs) rely more on the pore shapes. For triangular pores, the PBG is opening in the whole process of the lattice transformation, and for circular ones, the PBG is closed after a certain lattice structure. No PBG forms in the crystals with square pores. The PBG can be varied by adjusting the size of the pores. But a critical porosity exists for the opening of the PBG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号