首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Si(001)衬底上闪锌矿ZnO的制备与分析   总被引:1,自引:1,他引:0       下载免费PDF全文
采用分子束外延方法在室温下于Si(001)表面上生长ZnO材料。实验发现:样品为闪锌矿和六角结构的ZnO混合多晶薄膜,其表面分布着一系列具一定取向的近似长方形的纳米台柱结构。在不同参数的高温退火后,这些梯形台柱将变小,形成梯形纳米环,或分解为较小的纳米柱及其团簇结构等。分析表明:ZnO混合多晶薄膜的形成,以及表面纳米台柱的演变,与Si(001)衬底、较低温的生长温度及热效应等因素相关联。  相似文献   

2.
One-dimensional wurtzite InN nanowires and zincblende InN nanorods are prepared by chemical vapour deposition (CVD) method on natural cleavage plane (110) of GaAs. The growth direction of InN nanowires is [100], with wurtzite structure. The stable crystal structure of InN is wurtzite (w-InN), zincblende structure (z-InN) is only reported for 2D InN crystals before. However, in this work, the zincblende InN nanorods [011] are synthesized and characterized. The SEM and TEM images show that every nanorod shapes a conical tip, which can be explained by the anisotropy of growth process and the theory of Ehrlich Schwoebel barrier.  相似文献   

3.
The electronic structure and optical properties of ZnO wurtzite quantum wires with radius R≥3 nm are studied in the framework of six-band effective-mass envelope function theory. The hole effective-mass parameters of ZnO wurtzite material are calculated by the empirical pseudopotential method. It is found that the electron states are either two-fold or four-fold degenerate. There is a dark exciton effect when the radius R of the ZnO quantum wires is in the range of [3,19.1] nm (dark range in our model). The dark ranges of other wurtzite semiconductor quantum wires are calculated for comparison. The dark range becomes smaller when the |Δso| is larger, which also happens in the quantum-dot systems. The linear polarization factor of ZnO quantum wires is larger when the temperature is higher.  相似文献   

4.
Optical properties such as the dynamic dielectric function, reflectance, and energy-loss function of beryllium oxide (BeO) in its ambient and high-pressure phases are reported for a wide energy range of 0-50 eV. The calculations of optical properties employ first-principles methods based on all-electron density functional theory together with sum over states and finite-field methods. Our results show subtle differences in the calculated optical properties of the wurtzite, zincblende, rocksalt and CsCl phases of BeO, which may be attributed to the higher symmetry and packing density of these phases. For the wurtzite phase, the calculated band gap of 10.4 eV corresponds well with the experimental value of 10.6 eV and the calculated (average) index of refraction of 1.70 shows excellent agreement with the experimental value of 1.72.  相似文献   

5.
We have measured the piezobirefringence spectra of several II–VI compounds with zincblende (CdTe, ZnTe, ZnSe, ZnS) and wurtzite structure (CdS, ZnO) in the region of transparency. Similar studies have also been performed with rock-salt-type lead salts (PbS, PbTe). The results have been compared with theoretical prediction based on simplified models of the interband transitions and of the corresponding excitonic effects.  相似文献   

6.
The lattice dynamics of large-gap semiconductor MgTe compound at various crystallographic phases; rocksalt (B1), zincblende (B3), NiAs (B81) and wurtzite (B4), has been investigated from first principles calculations based on density functional theory (DFT) within plane-wave pseudopotential method and generalized gradient approximation (GGA) of the exchange-correlation functional. The static equation of states of the compound has been studied with Vinet equation of states. The ground state of the compound is a fourfold coordinated wurtzite structure, which is consistent with experiments and recent theoretical calculations. Full phonon dispersion spectra of all related phases of the MgTe have been calculated using density functional perturbation theory within the linear-response approach. In view of the total energy calculations and the obtained vibrational spectra, it can be emphasized that the MgTe polymorphs with tetrahedral coordination (zincblende and wurtzite structures) are of covalent character rather than ionic. The large TO-LO splitting of phonon branches of rocksalt and NiAs phases reflect the high ionicity of these phases.  相似文献   

7.
The geometric structure, electronic structure, optical properties and the formation energy of Sb-doped ZnO with the wurtzite structure are investigated using the first-principles ultra-soft pseudo-potential approach of plane wave based upon the density functional theory. The calculated results indicate that the volume of ZnO doped with Sb becomes larger, and the doping system yields the lowest formation energy of Sb on the interstitial site and the oxygen site. Furthermore, Sb dopant first occupies the octahedral oxygen sites of the wurtzite structure. It is found that Sb substituting on oxygen site behaves as a deep acceptor and shows the p-type degenerate semiconductor character. After doping, the electron density difference demonstrates the considerable electron charge density redistribution, which induces the effect of Sb-doped ZnO to increase the charge overlap between atoms. The density of states move towards lower energy and the optical band gap is broadened. Our culated results are in agreement with other experimental results and could make more precise monitoring and controlling possible during the growth of ZnO p-type materials.  相似文献   

8.
We present ab initio calculations of the InP band structure in the wurtzite phase and compare it with that of the zincblende phase. In both calculations, we use the full potential linearized augmented plane wave method as implemented in the WIEN2k code and the modified Becke-Johnson exchange potential, which provides an improved value of the bandgap. The structural optimization of the wurtizte InP gives , , and an internal parameter u=0.371, showing the existence of a spontaneous polarization along the growth axis. As compared to the ideal wurtzite structure (that with the lattice parameter derived from the zincblende structure calculations), the actual wurtzite structure is compressed (−1.3%) in plane and expanded (0.7%) along the c-direction. The value of the calculated band gaps agrees well with recent optical experiments. The calculations are also consistent with the optical transitions found using polarized light.  相似文献   

9.
The pseudopotential method is used to examine the static structural and electronic properties of BeO. At zero pressure, the wurtzite phase is found to be more stable in energy than the zincblende. At high pressure, we predict a phase transformation into an insulating rocksalt structure. The calculated charge density for the valence electrons is in good agreement with experiment.  相似文献   

10.
X. Tang  C.Y. Ma  Q.Y. Zhang 《Physics letters. A》2008,372(32):5372-5376
First-principles ultrasoft pseudopotential method is applied to study HX ZnO, which has a novel graphite like hexagonal structure transformed from wurtzite (WZ) phase under tensile stress along direction or compressive stress along [0001] direction. The electronic structure and optical properties, including dielectric function, reflectivity and absorption coefficient, of HX ZnO are calculated and compared with those of WZ ZnO under the given uniaxial stress. It is found that HX ZnO is an indirect semiconductor, being different from WZ ZnO. HX ZnO has a dielectric response different from WZ ZnO at ambient conditions or under the given uniaxial stress, especially in the case of Ec. Similar variation is also observed in the reflectivity and absorption coefficient. The variation in the optical properties is attributed to the additional ZnO bond along c-axis HX ZnO.  相似文献   

11.
ABSTRACT

Although AlInN is originally a wurtzite structure, zincblende and rocksalt are other potential phases. It will be interesting to have a comparative study of the physical properties of this compound in various phases. A DFT-based study of wurtzite, zincblende and rocksalt phases of AlInN alloys is carried out. Structural (lattice parameter, bulk modulus) and electronic properties (energy band gap, and electron effective mass) of the Al1??? xInxN alloys are investigated, at ambient pressure, throughout the whole range of indium contents for all considered phases. High pressure effects on the studied parameters are also examined, with the phase transition pressures computed for different values of In concentrations, and compared with available data. Structural density functional calculations are performed with Perdew–Burke–Ernzerhof gradient-corrected functional for solids (PBEsol), while electronic structure is computed with the modified Becke–Johnson (TB-mBJ) potential exchange to ensure a better accuracy of calculated the band gaps. Alloy randomness is taken into account using a special quasi-random structure.  相似文献   

12.
宽禁带直接带隙半导体材料氧化锌(ZnO),具有优异的光电性能、机械性能和化学特性。ZnO材料的结构对其性能影响较大,元素掺杂可改变ZnO晶体结构和带隙宽度,是提升ZnO材料性能的有效手段,当前常用Ag掺杂ZnO即为提高光催化反应效率。高压独立于温度、成分,是调控材料结构组织性能的重要手段,是产生新材料、发现新调控原理的重要因素。该研究通过对比纯ZnO晶体和Ag掺杂ZnO晶体的高压相变行为,揭示了元素掺杂对ZnO纳米晶体材料结构性能的影响。研究首先采用水热法辅助制备纯ZnO纳米微球和Ag掺杂ZnO纳米微球(1∶150Ag/ZnO),表征结果显示水热法合成的纯ZnO和1∶150Ag/ZnO均为六角纤锌矿晶体结构,形貌均为几十纳米尺寸小颗粒堆积形成的微球,ZnO晶格常数随着Ag离子掺杂而变大,Ag掺杂导致ZnO晶格膨胀。随后应用金刚石压腔结合原位拉曼光谱技术测定了纯ZnO和Ag掺杂ZnO的高压结构相变行为。相比于纯ZnO拉曼峰,Ag掺杂ZnO的E2(high)振动模式439 cm-1拉曼峰峰宽变窄,并呈现向低频方向移动的趋势,与无定形ZnO谱峰相近,表明Ag+取代Zn2+影响了Zn-O键,同时也影响了ZnO晶格结构的长程有序性。随体系压力增大,表征六角纤锌矿结构ZnO的拉曼特征峰439 cm-1出现瞬间弱化和宽化。压力增大至9.0 GPa时,纤锌矿结构ZnO拉曼特征峰439 cm-1消失,585 cm-1处出现新峰,ZnO晶体发生由六角纤锌矿向岩盐矿的结构转变。压力继续增大至11.5 GPa,新的拉曼峰显著增强,峰形变窄,同时向高波数方向移动,相变完成,岩盐矿结构ZnO性能稳定。1∶150 Ag/ZnO从六角纤锌矿结构到立方岩盐结构的相变压力为7.2 GPa,低于纯ZnO。相变压力降低表明晶体结构稳定性下降,可能的原因在于掺杂Ag导致ZnO晶格膨胀,晶体结构松弛,两相相对体积变化增加,从而导致相变势垒降低,使样品在较低压力下发生相变。纳米材料的高压研究揭示了元素掺杂对材料结构稳定性的影响,是纳米材料调控原理的潜在研究手段。  相似文献   

13.
Mn doping effect on a wurtzite-to-cubic phase transformation in ZnO has been investigated by in situ high pressure X-ray powder diffraction using synchrotron radiation. Unit cell expansion is clearly observed in Mn-doped ZnO samples. Mn ions sit at Zn site in the wurtzite structure. The onset transition pressure for the wurtzite-to-cubic phase transformation decreases from about 9.5 GPa for pure ZnO to 6 GPa for sintered 2at.% Mn-doped ZnO while the compressibility and volume collapse at transition pressures are not sensitive to the Mn doping in the wurtzite phase. The doping of Mn ions in ZnO increases the onset transition pressure for the cubic-to-wurtzite phase transformation. The results could be explained by a reduction of phase transformation barriers for both transition paths by the Mn doping. The observation of reduction of the wurtzite-to-cubic phase transformation pressure might point out a new direction to synthesize cubic wurtzite phase of ZnO by doping transition element(s).  相似文献   

14.
R. Deng 《Journal of luminescence》2008,128(9):1442-1446
We investigated structural and optical properties of Sn-doped ZnO nanobelts with different Sn concentrations. X-ray diffraction and Raman spectra showed that the Sn-doped ZnO nanobelts have wurtzite structure at low Sn concentration (<2.1 at%) and over 2.1 at% a part of them starts to have the inverse spinel Zn2SnO4 structure phase. In addition, for Sn-doped ZnO nanobelts, the photoluminescence spectra indicate that ultraviolet emission peak appears first a blue shift with the increase of Sn concentration due to Burstein-Moss effect and then exhibits a red shift due to band gap renormalization effect.  相似文献   

15.
Oriented ZnO nanorods were grown on ion-beam-sputtered ZnO seed layers through a hydrothermal approach without any metal catalyst. The sputtered ZnO seed layers were pre-annealed at different temperatures before the growth of ZnO nanorods. The effects of pre-annealing of the ZnO seed layers on the growth rate, crystallinity and optical properties of ZnO nanorods thereon were studied. The obtained ZnO nanorods had a wurtzite structure and grew along the preferential [0001] orientation with a normal direction to the substrates. Results show that the growth rate and density of the ZnO nanorods strongly depend on the pre-treatment conditions of the ZnO seed layer. With higher pre-treatment temperature, the crystallinity and surface characteristics of the ZnO seed layer were improved and thereafter the growth rate of ZnO nanorods thereon increased. Photoluminescence spectroscopy results show that the UV emission also becomes stronger and sharper with increasing annealing temperature of the ZnO seed layer.  相似文献   

16.
Structural and electronic properties of ZnO under high pressures   总被引:1,自引:0,他引:1  
In this work, we use first-principles calculations based on density-functional theory within the local-density approximation (LDA) to investigate the structural and electronic properties of ZnO under high-pressure. We have calculated the ground-state energy, the lattice constant, the bulk modulus, and its pressure derivative of the B4 (wurtzie), B3 (zinc blende), B2 (CsCl) and B1 (rocksalt) phases of ZnO. Moreover, the electronic structure, density of states (DOS) of the B4 (wurtzite) and B1 (rocksalt) phases of ZnO have been calculated. We show that our calculated values compare acceptably well with values reported in the literature.  相似文献   

17.
Using the first-principles methods we compute the electronic structure and the absorption spectra for a wurtzite CdSe (0001) slab covered with zincblende ZnSe and ZnS epilayers. For each structure we compute the DOS and the imaginary part of the dielectric function. We find that the semiconductor passivation shifts the ‘near Fermi-level’ states of the bare CdSe slab down to lower energy levels. The migration suggests the decrease of surface effects and energy loss. We observe the substantial reduction of the abnormal peaks in the absorption spectra of the bare CdSe slab, which seems to be a consequence of the DOS migration. This is consistent with the experimental results that a proper passivation enhance the luminescence efficiency. We also study the case that the epilayer surface is terminated with PH3 and find the PH3 passivation also reduces the surface state to some extent.  相似文献   

18.
Mn-doped ZnO nanorods were synthesized from aqueous solutions of zinc nitrate hexahydrate, manganese nitrate and methenamine by the chemical solution deposition method (CBD). Their microstructures, morphologies and optical properties were studied in detail. X-ray diffraction (XRD) results illustrated that all the diffraction peaks can be indexed to ZnO with the hexagonal wurtzite structure. Scanning electron microscope (SEM) results showed that the average diameter of Mn-doped ZnO nanorods was larger than that of the undoped one. Photoluminescence (PL) spectra indicated that manganese doping suppressed the emission intensity and caused the blue shift of UV emission position compared with the undoped ZnO nanorods. In the Raman spectrum of Mn-doped ZnO nanorods, an additional mode at about 525 cm−1 appeared which was significantly enhanced and broadened with the increase of Mn doping concentration.  相似文献   

19.
Single crystalline ZnSe nanowires with both zincblende and wurtzite structures have been synthesized via a chemical vapour deposition method under different growth conditions. The nanowires are usually 50-80nm in diameter, and several tens of microns in length. Room-temperature photoluminescence spectra from zincblende and wurtzite ZnSe nanowires show a broad luminescence band peaked at around 2. 71 e V and a deep level emission band peaked at around 2.00 eV, respectively. Effects of post-growth annealing on the photoluminescence of these nanowires have been investigated. Strong room-temperature band-edge emission could be obtained from the annealed zincblende ZnSe nanowires.  相似文献   

20.
The properties of ZnO quantum dots (QDs) synthesized by the sol-gel process are reported. The primary focus is on investigating the origin of the visible emission from ZnO QDs by the annealing process. The X-ray diffraction results show that ZnO QDs have hexagonal wurtzite structure and the QD diameter estimated from Debye-Scherrer formula is 8.9 nm, which has a good agreement with the results from transmission electron microscopy images and the theoretical calculation based on the Potential Morphing Method. The room-temperature photoluminescence spectra reveal that the ultraviolet excitation band has a red shift. Meanwhile, the main band of the visible emission shifts to the green luminescence band from the yellow luminescence one with the increase of the annealing temperature. A lot of oxygen atoms enter into Zn vacancies and form oxygen antisites with increasing temperature. That is probably the reason for the change of the visible emission band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号