首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 molar contents (0, 3, 7, and 12 mol%) are deposited on BK7 substrates by electron-beam evaporation technique. The effects of different Y2O3 contents on residual stresses and structures of YSZ thin films are studied. Residual stresses are investigated by means of two different techniques: the curvature measurement and x-ray diffraction method. It is found that the evolution of residual stresses of YSZ thin films by the two different methods is consistent. Residual stresses of films transform from compressive stress into tensile stress and the tensile stress increases monotonically with the increase of Y2O3 content. At the same time, the structures of these films change from the mixture of amorphous and monoclinic phases into high temperature cubic phase. The variations of residual stress correspond to the evolution of structures induced by adding of Y2O3 content.  相似文献   

2.
A confocal Raman investigation of Pb1 − xLaxTi1 − x/4O3 (PLT) thin films grown by RF magnetron sputtering on PbOx/Pt/Ti/SiO2/Si substrates with an intermediate LaSrCoO3 (LSCO) layer was performed. The influence of the LaSrCoO3 buffer layer was analyzed taking advantage of the observed Raman spectral band variation, which varied according to different manufacturing procedures. In the presence of a LSCO layer, the A1(1TO) Raman mode, which was indicative of tetragonal distortion, was pronouncedly enhanced, and a slight deviation from the (0 0 1) plane of the film was observed from the angular dependence of the polarized Raman spectral intensity. Furthermore, the spectral band variation as well as the residual stress along the in-depth direction was measured in the film from cross-sectional spectral line scans. This latter measurement showed a relaxation of the lattice mismatch in the presence of LSCO and PbO layers.  相似文献   

3.
A systematic spectroscopic investigation of PbxLa1−xTi1−x/4O3 (PLT) thin films grown on PbOx/Pt/Ti/SiO2/Si substrate by RF magnetron sputtering was performed by using confocal Raman spectroscopy. Influence of the growth condition modification including different growth temperatures, with various buffer layer thickness, and post-annealing treatments were analyzed with taking advantages of the corresponding Raman spectral band variation in the respective process. Significant change in the spectral bands occurred with the alteration of the growth condition, and the related mechanisms were discussed after spectral deconvolution, providing reliable information about the direction for film growth.  相似文献   

4.
施煜  孙清清  董琳  刘晗  丁士进  张卫 《中国物理快报》2008,25(11):3954-3956
Fermi level pinning at the interface between high-h gate dielectric and GaAs induced by unstable native oxides is a major obstacle for high performance GaAs-based metal-oxide-semiconductor (MOS) devices. We demonstrate the improved Al2O3/GaAs interracial characteristics by (NH4)2S immersion and NH3 thermal pretreatment prior to A1203 deposition. X-ray photoelectron spectroscopy (XPS) analysis confirms that sulfuration of GaAs surface by (NH4 )2S solution can effectively reduce As-O bonds while Ga-O bonds and elemental As still exist at Al2O3 /GaAs interface. However, it is found that N incorporation during the further thermal nitridation on sulfurated GaAs can effectively suppress the native oxides and elemental As in the sequent deposition of Al2O3. Atomic force microscopy (AFM) shows that the further thermal nitridation on sulfurated GaAs surface can also improve the surface roughness.  相似文献   

5.
Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and Raman spectroscopy are employed to characterize the microstructural properties of these films. Room temperature ferromagnetism is observed by superconducting quantum interference device (SQUID). The results indicate that Mn doping introduces the incorporation of Mn^2+ ions into the ZnO host matrix and the insertion of Mn^2+ ions increases the lattice defects, which is correlated with the ferromagnetism of the obtained films. The doping concentration is also proven to be a crucial factor for obtaining highly ferromagnetic Zn1-xMnxO films.  相似文献   

6.
Composition in amorphous Si1-xCx:H heteroepitaxial thin films on Si (100) by plasma enhanced chemical vapour deposition (PECVD) is analysed. The unknown x (0.45-3.57) and the depth profile of hydrogen in the thin films are characterized by Rutherford backscattering spectrum (RBS), resonance-nuclear reaction analysis (R-NRA) and elastic recoil detection (ERD), respectively. In addition, the depth profile of hydrogen in the unannealed thin films is compared to that of the annealed thin films with rapid thermal annealing (RTA) or laser spike annealing (LSA) in nitrogen atmosphere. The results indicate that the stoichiometric amorphous SiC can be produced by PECVD when the ratio of CH4/SiH4 is approximately equal to 25. The content of hydrogen decreases suddenly from 35% to 1% after 1150℃ annealing. RTA can reduce hydrogen in SiC films effectively than LSA.  相似文献   

7.
We have preformed systematical ab initio studies of the structural and electronic properties of short-period Si1-xⅣx/Si (x = 0.125, 0.25, 0.5, Ⅳ=Ge, Sn) superlattices (SLs) grown along the [001] direction on bulk Si. The present calculations reveal that the Si0.875Ge0.125/Si, Si0.75Ge0.25/Si and Si0.875Sn0.125/Si are the F-point direct bandgap semiconductors. The technological importance lies in the expectation that the direct gap Si1-xⅣx/Si SLs may be used as components in integrated optoelectronic devices, in conjunction with the already well-established and highly advanced silicon technology.  相似文献   

8.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

9.
Nanocrystals of Ge surrounded by a germanium oxide matrix have been formed by dry thermal oxidation of polycrystalline SiGe layers. Violet (3.16 eV) luminescence emission is observed when Ge nanocrystals, formed by the oxidation of the Ge segregated during the oxidation of the SiGe layer, are present, and vanishes when all the Ge has been oxidized forming GeO2. Based on the evolution of the luminescence intensity and the structure of the oxidized layer with the oxidation time, the recombination of excitons inside the nanocrystals and the presence of defects in the bulk oxide matrix are ruled out as sources of the luminescence. The luminescence is attributed to recombination in defects at the Ge sub-oxide interface between the Ge nanocrystals and the surrounding oxide matrix, which is GeO2.  相似文献   

10.
The goal of this work was the characterization, step by step, of the enzyme glucose oxidase (GOx) immobilization on silicon oxide surfaces, mainly by means of X-Ray photoelectron spectroscopy (XPS). The immobilization protocol consists of four steps: oxide activation, silanization, linker molecule deposition and GOx immobilization. The linker molecule, glutaraldehyde (GA) in this study, must be able to form a uniform layer on the sample surface in order to maximize the sites available for enzyme bonding and achieve the best enzyme deposition. Using a thin SiO2 layer grown on Si wafers and following the XPS Si2p signal of the Si substrate during the immobilization steps, we demonstrated both the glutaraldehyde layer uniformity and the possibility to use XPS to monitor thin layer uniformity. In fact, the XPS substrate signal, not shielded by the oxide, is suppressed only when a uniform layer is deposited. The enzyme correct immobilization was monitored using the XPS C1s and N1s signals. Atomic force microscopy (AFM) measurements carried out on the same samples confirmed the results.  相似文献   

11.
Carrier injection performed in Pro.7 Cao.aMnOa junctions demonstrate resistance switching (RS) characteristic with dramatic changes in both resistances and interface barriers, which suggests a charge carrier self-trapping model in strongly correlated electronic framework. Un-stable RS behaviour without electric fields in epitaxial Pr0.7(Ca1-xSrx)0.3MnO3 (PCSMO) films shows dependences on insulator-metal transition temperature, which indicates that RS process is really related to the intrinsic property of carriers. The switched resistance of epitaxial PCSMO films also depends on the amount of current pulses, which shouM be another evidence of the carrier self-trapping model, similarly to the dependence on the amount of self-trapped charge carriers.  相似文献   

12.
Ge1−xCx films deposited by using a medium frequency magnetron sputtering technique (MFMST) were analyzed with X-ray photoelectron and Raman spectroscopy. The deposited Ge1−xCx films consist of C, Ge, GeC and GeOy. The GeC content in the Ge1−xCx films linearly decreases, and the C content linearly increases with increasing deposition temperature from 150 to 350 °C. The GeC content decreases from 11.6% at a substrate bias of 250 V to a lowest value of 9.6% at 350 V, then increases again to 10.4% at 450 V. While the C content increases from 49.0% at the bias of 250 V to a largest value of 58.0% at 350 V and then maintains this level at 450 V. It is found that selecting a bias parameter seems more effective than deposition temperature if we want to obtain a higher content of GeC in the deposited films. In addition, a new method is presented in this paper to estimate the changes of GeC content in the Ge1−xCx films by observing the shifts of Ge-Ge LO phonon peak in Raman spectra for the Ge1−xCx films. The related mechanism is also discussed in this paper.  相似文献   

13.
Thin chalcogenide films of Ge1−xSe2Pbx (x=0, 0.2, 0.4, 0.6 and 0.8) have been prepared by the thermal evaporation technique, from previously synthesized bulk samples. The X-ray diffraction showed the amorphous nature for the as-deposited films and the partially crystalline for the annealed films. The optical constants (the refractive index, n, and absorption index k) were determined for as-deposited and annealed Ge1−xSe2Pbx films of different thicknesses by using spectrophotometeric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2500 nm. The obtained values of both n and k were found to be independent of the film thickness. The optical absorption edges are described using both the Urbach rule and the indirect transition. In transparent region, the spectral dependences of refractive index were interpreted in the frame of a single oscillator model.  相似文献   

14.
We study the growth of AlxGa1-x N epilayers on (0001) sapphire by low-pressure MOCVD, using a lowtemperature AIN buffer. By varying the input flow rates of trimethylgallium (TMGa), we obtain crack-free AlGaN films in the whole range of composition. A linear relationship between gas and solid Al content is observed. The structural properties of the layers (x =0- 1) are investigated by x-ray diffraction, atomic force microscopy (AFM) and scanning electron microscopy (SEM). It is found that a two-direction growth appears along the c-axis and the (1011) directions for x ≥ 0.45. From the results of Raman spectroscopy, we suggest that the compressive stain and the lack of mobility orAl adatoms can induce the formation of (1011) grains.  相似文献   

15.
Applied Physics A - Silicide formation and ion beam mixing of Fe/Si bilayers due to Ar-, Xe- and Au-ion irradiations at room and liquid-nitrogen temperatures were investigated. For the study of...  相似文献   

16.
Pyrochlore-free 0.64Pb(Ni1/3Nb2/3)O3-0.36PbTiO3 (0.64PNN-0.36PT) powder has been successfully synthesized by only one calcination step using a coating method. The formation of pyrochlore phase is prevented by coating NiCO3·2Ni(OH)2·2H2O on Nb2O5 particles. NiCO3·2Ni(OH)2·2H2O-coated Nb2O5 powder is prepared by heterogeneous precipitation method. The coating structure is confirmed by transmission electron microscope (TEM) with energy dispersive spectroscope (EDS). Single calcination treatment of the coating powder mixed with appropriate amounts of Pb3O4 and TiO2 powders at 900 °C for 2 h produces the pure-perovskite 0.64PNN-0.36PT powder. The elimination of the pyrochlore phase can be explained in terms of the separating of Pb3O4 and Nb2O5 by the NiCO3·2Ni(OH)2·2H2O coating layer.  相似文献   

17.
The energy position of a dip observed in the IR‐reflectance spectra recorded from wurtzite c ‐plane Alx Ga1–x N epitaxial films grown on SiC substrate reflects the composition of the alloy. A calibration procedure is presented with the possibility of mapping for large area wafer. The technique is non‐destructive, scalable and fast. The limitations are discussed and comparisons with other techniques are made. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Raman scattering studies were performed on hot-wall chemical vapor deposited (heteroepitaxial) silicon carbide (SiC) films grown on Si substrates with orientations of (1 0 0), (1 1 1), (1 1 0) and (2 1 1), respectively. Raman spectra suggested that good quality cubic SiC single crystals could be obtained on the Si substrate, independent of its crystallographic orientation. Average residual stresses in the epitaxially grown 3C-SiC films were measured with the laser waist focused on the epilayer surface. Tensile and compressive residual stresses were found to be stored within the SiC film and in the Si substrate, respectively. The residual stress exhibited a marked dependence on the orientation of the substrate. The measured stresses were comparable to the thermal stress deduced from elastic deformation theory, which demonstrates that the large lattice mismatch between cubic SiC and Si is effectively relieved by initial carbonization. The confocal configuration of the optical probe enabled a stress evaluation along the cross-section of the sample, which showed maximum tensile stress magnitude at the SiC/Si interface from the SiC side, decreasing away from the interface in varied rate for different crystallographic orientations. Defocusing experiments were used to precisely characterize the geometry of the laser probe in 3C-SiC single crystal. Based on this knowledge, a theoretical convolution of the in-depth stress distribution could be obtained, which showed a satisfactory agreement with stress values obtained by experiments performed on the 3C-SiC surface.  相似文献   

19.
Nitridation of GaAs (1 0 0) by N2+ ions with energy Ei = 2500 eV has been studied by Auger- and Electron Energy Loss Spectroscopy under experimental conditions, when electrons ejected only by nitrated layer, without contribution of GaAs substrate, were collected. Diagnostics for quantitative chemical analysis of the nitrated layers has been developed using the values of NKVV Auger energies in GaN and GaAsN chemical phases measured in one experiment, with the accuracy being sufficient for separating their contributions into the experimental spectrum. The conducted analysis has shown that nanofilm with the thickness of about 4 nm was fabricated, consisting mainly of dilute alloy GaAs1−xNx with high concentration of nitrogen x ∼ 0.09, although the major part of the implanted nitrogen atoms are contained in GaN inclusions. It was assumed that secondary ion cascades generated by implanted ions play an important role in forming nitrogen-rich alloy.  相似文献   

20.
TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel films have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the film, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号