首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adiabatic two-phase frictional multipliers for SUVA, R-134a flowing in a rectangular duct (with DH = 4.8 mm) have been measured for three nominal system pressures (0.9 MPa, Tsat = 35.5 °C; 1.38 MPa, Tsat = 51.8 °C; and 2.41 MPa, Tsat = 75.9 °C) and three nominal mass fluxes (510, 1020 and 2040 kg/m2/s). The data is compared with several classical correlations to assess their predictive capabilities. The Lockhart–Martinelli model gives reasonable results at the lowest pressure and mass flux, near the operating range of most refrigeration systems, but gives increasingly poor comparisons as the pressure and mass flux are increased. The Chisholm B-coefficient model is found to best predict the data over the entire range of test conditions; however, there is significant disagreement at the highest pressure tested (with the model over predicting the data upwards of 100% for some cases). The data shows an increased tendency toward homogeneous flow as the pressure and flow rate are increased, and in fact the homogeneous model best predicts the bulk of the data at the highest pressure tested.  相似文献   

2.
Natural convection boiling of water and surfactants at atmospheric pressure in narrow horizontal annular channels was studied experimentally in the range of Bond numbers Bo = 0.185–1.52. The flow pattern was visualized by high-speed video recording to identify the different regimes of boiling of water and surfactants. The channel length was 24 mm and 36 mm, the gap size was 0.45, 1.2, 2.2, and 3.7 mm. The heat flux was in the range of 20–500 kW/m2, the concentration of surfactant solutions was varied from 10 to 600 ppm. For water boiling at Bond numbers Bo < 1 the CHF in restricted space is lower than that in unconfined space. This effect increases with increasing the channel length. For water at Bond number Bo = 1.52, boiling can almost be considered as unconfined. Additive of surfactant led to enhancement of heat transfer compared to water boiling in the same gap size, however, this effect decreased with decreasing gap size. For the same gap size, CHF in surfactant solutions was significantly lower than that in water. Hysteresis was observed for boiling in degraded surfactant solutions.  相似文献   

3.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

4.
Experimental results of adiabatic boiling of water flowing through a fractal-like branching microchannel network are presented and compared to numerical model simulations. The goal is to assess the ability of current pressure loss models applied to a bifurcating flow geometry. The fractal-like branching channel network is based on channel length and width ratios between adjacent branching levels of 2−1/2. There are four branching sections for a total flow length of 18 mm, a channel height of 150 μm and a terminal channel width of 100 μm. The channels were Deep Reactive Ion Etched (DRIE) into a silicon disk. A Pyrex disk was anodically bonded to the silicon to form the channel top to allow visualization of the flow within the channels. The flow rates ranged from 100 to 225 g/min and the inlet subcooling levels varied from 0.5 to 6 °C. Pressure drop along the flow network and time averaged void fraction in each branching level were measured for each of the test conditions. The measured pressure drop ranged from 20 to 90 kPa, and the measured void fraction ranged from 0.3 to 0.9. The measured pressure drop results agree well with separated flow model predictions accounting for the varying flow geometry. The measured void fraction results followed the same trends as the model; however, the scatter in the experimental results is rather large.  相似文献   

5.
In this paper, the heat/mass transfer analogy was used to investigate the heat transfer and pressure drop in a square channel with triangular ribs on its two opposite walls. Reynolds number varied from 1 × 104 to 7 × 104; the dimensionless heights of the triangular ribs H/W were 0.04, 0.07, and 0.1; and their dimensionless pitches S/W were 0.45, 0.63, 1.0, 1.37, 1.55, and 2.1. Experimental results showed that the heat transfer coefficients of the wall with triangular rib were about 1 to 2.3 times larger than those of a smooth-channel wall, and the pressure drops along this roughened channel were about 1 to 10 times larger than those for a smooth channel. Correlations of heat transfer and pressure drop were obtained, which are useful for practical designs.  相似文献   

6.
利用格子Boltzmann方法模拟二维水平通道内水的流动沸腾过程,获得不同壁面过热度下流型特点和不同因素对换热过程的影响规律。结果表明,随着壁面过热度升高,流道内流型依次经历从泡状流、弹状流到反环流的转变,平均热流密度和平均换热系数先增大后减小。入口流速降低会使流道内出现受限气泡流,核态沸腾受到抑制。提高入口流速能够有效促进气泡脱离,壁面平均换热系数随入口流速增大而增大,但增长速率有所减小。减小通道宽度有利于汽化现象发生,核态沸腾得到强化,壁面平均换热系数有所提高。  相似文献   

7.
Secondary flow patterns, pressure drop and heat transfer in rib-roughened rectangular channels have been investigated. The aspect ratio of the channels is 1–8, and ribs are attached to the wide channel walls in order to set up swirling motions. The geometries tested consist of channels having cross ribs, parallel ribs, cross V-ribs, parallel V-ribs, and multiple V-ribs (Swirl Flow Tube). The flow patterns were investigated using smoke wire visualization and LDV measurements. The smoke wire experiments have been performed at Re=1100 and the LDV measurements at Re=3000 at periodic fully developed conditions. The heat transfer and pressure drop are described by j and f factors for Reynolds numbers from 500 to 15 000. The distributions of axial mean velocity and turbulent fluctuations are strongly influenced by the secondary flows. Large mean velocities and small fluctuations are found in regions where the secondary flow is directed towards a surface, while small mean velocities and large fluctuations are found in regions where the secondary flow is directed away from a surface. The Swirl Flow Tube provides a significant increase in the j factor at Reynolds numbers from 1000 to 2000, but unfortunately also an increase in the f factor. At higher Reynolds numbers, the j and f factors of the Swirl Flow Tube are of the same order of magnitude as for the other rib-roughened channels. It is found that the flow direction in a channel with parallel V-ribs has important influence on the j/f ratio. At Reynolds numbers above 4000, this channel provides the highest j/f ratio if the V-ribs are pointing upstream; while it provides the lowest j/f ratio of all rib configurations, if the V-ribs are pointing downstream.  相似文献   

8.
A general heat transfer correlation for non-boiling gas–liquid flow with different flow patterns in horizontal pipes is proposed. In order to overcome the effect of flow pattern on heat transfer, a flow pattern factor (effective wetted-perimeter) is developed and introduced into our proposed correlation. To verify the correlation, local heat transfer coefficients and flow parameters were measured for air–water flow in a pipe in the horizontal position with different flow patterns. The test section was a 27.9 mm ID stainless steel pipe with a length to diameter ratio of 100. A total of 114 data points were taken by carefully coordinating the liquid and gas superficial Reynolds number combinations. The heat transfer data were measured under a uniform wall heat flux boundary condition ranging from about 3000 W/m2 to 10,600 W/m2. The superficial Reynolds numbers ranged from about 820 to 26,000 for water and from about 560 to 48,000 for air. These experimental data including different flow patterns were successfully correlated by the proposed general two-phase heat transfer correlation with an overall mean deviation of 5.5%, a standard deviation of 11.7%, and a deviation range of −18.3% to 37.0%. Ninety three percent (93%) of the data were predicted within ±20% deviation.  相似文献   

9.
The dynamic behavior of a horizontal boiling channel with a surge tank is investigated through nonlinear analysis. The model involves a surge tank that is subject to inlet mass flow rate and a constitutive model containing a cubic nonlinearity is used to describe the outlet pressure-flow rate relation of the downstream boiling regime. The model also includes boiling heat transfer process and incorporates the effect of the wall thermal capacity which allows the temperature and heat transfer coefficient of the heater wall to vary with time. Within certain operating regimes, the model exhibits self-excited periodic oscillations, which can be identified with pressure-drop oscillations. In this study, these oscillations are described as relaxation oscillation and the qualitative features of the response can be understood in terms of the underlying model. Finally, the present model is compared with the experimental data available in literature to investigate that transient effects of temperature heater walls, pressure, and mass flow rate.  相似文献   

10.
11.
Two-phase flow and flow boiling phenomena of fluidic mixtures in small and mini channels are becoming important in the miniaturization of thermal systems. This paper aims to present a state-of-the-art review in this important area and to identify what have been done so far and what still need to be done in the future. Firstly, various definitions of small and mini channels are described and the criteria based on these definitions are compared with each other. Comments on different viewpoints of the channel size classifications are acknowledged. Secondly, the background of two-phase flow and flow boiling of mixtures is described. Then, the current research status of two-phase flow and flow boiling of mixtures in normal size channels is presented as it is a basis for the study of two-phase flow and flow boiling of mixtures in small and mini channels. Finally, an overall review of two-phase flow and flow boiling of mixtures in small and mini channels is presented. It is concluded that the available study of two-phase flow and flow boiling of mixtures in small and mini channels is rather scarce and a systematic knowledge of two-phase flow and flow boiling of mixtures in small and mini channels is required. Based on this review, the future research directions including both fundamental and applied research in this area have been indicated.  相似文献   

12.
Many heat exchangers, such as shell and tube heat exchangers and kettle reboilers, involve boiling with flow across tubes. For rational design of such heat exchangers, it is desirable to be able to predict heat transfer on a single tube. The dimensionless correlation presented here agrees well with available data for subcooled boiling during crossflow on a single tube. The correlating parameters are the same as those used for boiling inside tubes16. The data correlated include three fluids, four tube materials, tube diameters from 1.2 to 25.4 mm, subcooling from 0 to 80°C, and velocities from 0.02 to 7.8 m/s. The mean deviation of 334 data points is 9.5%. Hence the new correlation appears to be usable over a wide range of parameters.  相似文献   

13.
Two-phase air–water flow and heat transfer in a 25 mm internal diameter horizontal pipe were investigated experimentally. The water superficial velocity varied from 24.2 m/s to 41.5 m/s and the air superficial velocity varied from 0.02 m/s to 0.09 m/s. The aim of the study was to determine the heat transfer coefficient and its connection to flow pattern and liquid film thickness. The flow patterns were visualized using a high speed video camera, and the film thickness was measured by the conductive tomography technique. The heat transfer coefficient was calculated from the temperature measurements using the infrared thermography method. It was found that the heat transfer coefficient at the bottom of the pipe is up to three times higher than that at the top, and becomes more uniform around the pipe for higher air flow-rates. Correlations on local and average Nusselt number were obtained and compared to results reported in the literature. The behavior of local heat transfer coefficient was analyzed and the role of film thickness and flow pattern was clarified.  相似文献   

14.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

15.
Wettability is an important parameter in micro-scale flow patterns. Previous research has usually been conducted in conventional microtubes due to limitations of visualizing flow patterns and fabricating microchannels. However, most microchannels in practical applications have rectangular shape. Furthermore, pressure drop is closely related with flow pattern. Hence, we studied water liquid and nitrogen gas flows in rectangular microchannels with different wettabilities. The rectangular glass microchannels were fabricated from photosensitive glass, whose surface is hydrophilic. The surface of one was silanized using octadecyl-trichloro-silane (OTS) to prepare a hydrophobic microchannel. The two-phase flow pattern was visualized with a high-speed camera and a long distance microscope. The frictional pressure drop in the microchannel was measured directly with embedded pressure ports. The flow pattern and pressure drop in the hydrophobic microchannel were totally different from those in the hydrophilic microchannel. Finally, the two-phase frictional pressure drop was analyzed based on the flow patterns of different wettabilities.  相似文献   

16.
The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanoparticle concentration distributions are obtained. The effects of the Brownian motion parameter N b, the thermophoresis parameter N t, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.  相似文献   

17.
Aerodynamics and heat transfer in cyclones with particle-laden gas flow   总被引:1,自引:0,他引:1  
Experiments were performed on a 204 mm diameter water-cooled cyclone to measure the pressure drop and heat transfer in different sections of the cyclone. Hot gas at 250°C entered the cyclone with and without suspended particles. Heat transfer and pressure drop in solids-free gas flow were compared with those measured for particle-laden gas flow of different solids.  相似文献   

18.
A numerical study has been performed for the periodically fully-developed flow in two-dimensional channels with streamwise-periodic round disturbances on its two walls. To accurately describe the round disturbance boundary condition, a body fitted grid was used. The flow and heat transfer have been studied in the range of Reynolds number, Re=50–700, and Prandtl number Pr=0.71. The influences of disturbance parameters and Reynolds number on heat transfer and friction have been investigated in detail. Some of the solutions have been examined using both steady and unsteady finite difference schemes; and the same results have been obtained. The results show that different flow patterns can occur with different deployments of the disturbances. With appropriate configuration of the disturbances, the Nusselt number can reach a value four times greater than in a smooth channel at the same condition, with the penalty of a much greater pressure drop. On the other hand, if the disturbances are not deployed properly, augmentation of heat transfer cannot be acquired. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Conjugate convective-conductive heat transfer in a rectangular region with forced flow and a heat source is simulated numerically. Distributions of the thermal and hydrodynamic characteristics of the flow regimes studied are obtained. The evolution of the process analyzed is shown. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 6, pp. 69–81, November–December, 2008  相似文献   

20.
In this paper, the effects of slip and heat transfer are studied on the peristaltic transport of a magnetohydrodynamic (MHD) fourth grade fluid. The governing equations are modeled and solved under the long wavelength approximation by using a regular perturbation method. Explicit expressions of solutions for the stream function, the velocity, the pressure gradient, the temperature, and the heat transfer coefficient are presented. Pumping and trapping phenomena are analyzed for increasing the slip parameter. Further, the temperature profiles and the heat transfer coefficient are observed for various increasing parameters. It is found that these parameters considerably affect the considered flow characteristics. Comparisons with published results for the no-slip case are found in close agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号